Citation: | Haiyun TAN, Tianyuan HUANG, Peiyu JI, Lanjian ZHUGE, Xuemei WU. Simulation study on electron heating characteristics in magnetic enhancement capacitively coupled plasmas with a longitudinal magnetic field[J]. Plasma Science and Technology, 2022, 24(10): 105403. DOI: 10.1088/2058-6272/ac7385 |
The electron heating characteristics of magnetic enhancement capacitively coupled argon plasmas in presence of both longitudinal and transverse uniform magnetic field have been explored through both theoretical and numerical calculations. It is found that the longitudinal magnetic field can affect the heating by changing the level of the pressure heating along the longitudinal direction and that of the Ohmic heating along the direction which is perpendicular to both driving electric field and the applied transverse magnetic field, and a continuously increased longitudinal magnetic field can induce pressure heating to become dominant. Moreover, the electron temperature as well as proportion of some low energy electrons will increase if a small longitudinal magnetic field is introduced, which is attributed to the increased average electron energy. We believe that the research will provide guidance for optimizing the magnetic field configuration of some discharge systems having both transverse and longitudinal magnetic field.
This work is supported by National Natural Science Foundation of China (Nos. 11975163 and 12175160), a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).
[1] |
Wilczek S et al 2020 J. Appl. Phys. 127 181101 doi: 10.1063/5.0003114
|
[2] |
Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn
(Hoboken: Wiley)
|
[3] |
Godyak V A and Piejak R B 1990 Phys. Rev. Lett. 65 996 doi: 10.1103/PhysRevLett.65.996
|
[4] |
Popov O A and Godyak V A 1985 J. Appl. Phys. 57 53 doi: 10.1063/1.335395
|
[5] |
Lieberman M A 1988 IEEE Trans. Plasma Sci. 16 638 doi: 10.1109/27.16552
|
[6] |
Kaganovich I D 2002 Phys. Rev. Lett. 89 265006 doi: 10.1103/PhysRevLett.89.265006
|
[7] |
Schulze J et al 2008 J. Phys. D: Appl. Phys. 41 105214 doi: 10.1088/0022-3727/41/10/105214
|
[8] |
Schulze J et al 2015 Plasma Sources Sci. Technol. 24 015019 doi: 10.1088/0963-0252/24/1/015019
|
[9] |
Sharma S and Turner M M 2013 Phys. Plasmas 20 073507 doi: 10.1063/1.4816952
|
[10] |
Turner M M 1995 Phys. Rev. Lett. 75 1312 doi: 10.1103/PhysRevLett.75.1312
|
[11] |
Gozadinos G, Turner M M and Vender D 2001 Phys. Rev. Lett. 87 135004 doi: 10.1103/PhysRevLett.87.135004
|
[12] |
Kawamura E, Lieberman M A and Lichtenberg A J 2006 Phys. Plasmas 13 053506 doi: 10.1063/1.2203949
|
[13] |
Sharma S and Turner M M 2013 Plasma Sources Sci. Technol. 22 035014 doi: 10.1088/0963-0252/22/3/035014
|
[14] |
Surendra M and Dalvie M 1993 Phys. Rev. E 48 3914 doi: 10.1103/PhysRevE.48.3914
|
[15] |
Lafleur T, Chabert P and Booth J P 2014 Plasma Sources Sci. Technol. 23 035010 doi: 10.1088/0963-0252/23/3/035010
|
[16] |
Liu Y, Booth J P and Chabert P 2018 Plasma Sources Sci. Technol. 27 025006 doi: 10.1088/1361-6595/aaa86e
|
[17] |
Schulze J et al 2018 Plasma Sources Sci. Technol. 27 055010 doi: 10.1088/1361-6595/aabebc
|
[18] |
Proto A and Gudmundsson J T 2020 J. Appl. Phys. 128 113302 doi: 10.1063/5.0019340
|
[19] |
Proto A and Gudmundsson J T 2021 Plasma Sources Sci. Technol. 30 065009 doi: 10.1088/1361-6595/abef1d
|
[20] |
Sharma S et al 2018 Phys. Plasmas 25 080704 doi: 10.1063/1.5033350
|
[21] |
Turner M M et al 1996 Phys. Rev. Lett. 76 2069 doi: 10.1103/PhysRevLett.76.2069
|
[22] |
You S J et al 2002 Appl. Phys. Lett. 81 2529 doi: 10.1063/1.1506944
|
[23] |
Patil S et al 2020 An enhanced operating regime for high frequency capacitive discharges arXiv: 2012.02752
|
[24] |
Zhang Q Z et al 2021 Phys. Rev. E 104 045209 doi: 10.1103/PhysRevE.104.045209
|
[25] |
Patil S et al 2022 Phys. Rev. Res. 4 013059 doi: 10.1103/PhysRevResearch.4.013059
|
[26] |
Wang L et al 2020 Plasma Sources Sci. Technol. 29 105004 doi: 10.1088/1361-6595/abb2e7
|
[27] |
Zheng B C et al 2019 Plasma Sources Sci. Technol. 28 09LT03 doi: 10.1088/1361-6595/ab419d
|
[28] |
Zheng B C et al 2021 Plasma Sources Sci. Technol. 30 035019 doi: 10.1088/1361-6595/abe9f9
|
[29] |
Yang S L et al 2017 Plasma Process. Polym. 14 1700087 doi: 10.1002/ppap.201700087
|
[30] |
Phelps A V and Petrovic Z L 1999 Plasma Sources Sci. Technol. 8 R21 doi: 10.1088/0963-0252/8/3/201
|
[31] |
Cramer W H 1959 J. Chem. Phys. 30 641 doi: 10.1063/1.1730023
|
[32] |
Nanbu K 2000 IEEE Trans. Plasma Sci. 28 971 doi: 10.1109/27.887765
|
[33] |
Birdsall C K and Langdon A B 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill)
|
[34] |
Zheng B C et al 2021 Phys. Plasmas 28 014504 doi: 10.1063/5.0029353
|
[1] | Shaobo GONG, Zhongbing SHI, Yixuan ZHOU, Tongchuan ZHANG, Jinming GAO, Dianlin ZHENG, Ping SUN, Liming YU, Wei CHEN, Wulyu ZHONG, Min XU, Xuru DUAN. Optical design of vertical edge Thomson scattering on HL-2M tokamak[J]. Plasma Science and Technology, 2023, 25(7): 075601. DOI: 10.1088/2058-6272/acbd8d |
[2] | Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19 |
[3] | Yong LU (卢勇), Lijun CAI (蔡立君), Yuxiang LIU (刘雨祥), Jian LIU (刘健), Yinglong YUAN (袁应龙), Guoyao ZHENG (郑国尧), Dequan LIU (刘德权). Thermal-hydraulic analysis of the HL-2M divertor using an homogeneous equilibrium model[J]. Plasma Science and Technology, 2017, 19(9): 95601-095601. DOI: 10.1088/2058-6272/aa7628 |
[4] | SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02 |
[5] | CAO Chengzhi(曹诚志), LIU Dequan(刘德权), LIN Tao(林涛), QIAO Tao(乔涛). Investigation on the Fatigue Characteristic in Support Structure of HL-2M Tokamak[J]. Plasma Science and Technology, 2014, 16(2): 172-176. DOI: 10.1088/1009-0630/16/2/15 |
[6] | CUI Xuewu (崔学武), PAN Yudong (潘宇东), CUI Zhengying (崔正英), LI Jiaxian (李佳鲜), et al.. HL-2M Divertor Geometry Exploration with SOLPS5.0[J]. Plasma Science and Technology, 2013, 15(12): 1184-1189. DOI: 10.1088/1009-0630/15/12/04 |
[7] | CEN Yishun (岑义顺), LI Qiang (李强), DING Yonghua (丁永华), CAI Lijun (蔡立君), et al.. Stress and Thermal Analysis of the In-Vessel RMP Coils in HL-2M[J]. Plasma Science and Technology, 2013, 15(9): 939-944. DOI: 10.1088/1009-0630/15/9/20 |
[8] | PENG Jianfei (彭建飞), XUAN Weimin (宣伟民), WANG Haibing (王海兵), LI Huajun (李华俊), WANG Yingqiao (王英翘), WANG Shujin (王树锦). Study on Matching a 300 MVA Motor Generator with an Ohmic Heating Power Supply in HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 300-302. DOI: 10.1088/1009-0630/15/3/22 |
[9] | CAI Lijun (蔡立君), LIU Dequan (刘德权), RAN Hong (冉红), LI Jiaxian (李佳鲜), LI Yong (李勇), CAO Zeng (曹曾). Preliminary Calculation of Electromagnetic Loads on Vacuum Vessel of HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 271-276. DOI: 10.1088/1009-0630/15/3/16 |
[10] | LI Jiaxian (李佳鲜), PAN Yudong (潘宇东), ZHANG Jinhua (张锦华), CUI Xuewu (崔学武), CHEN Liaoyuan (陈燎原). Preliminary Analysis of Volt-Second Consumption on HL-2M[J]. Plasma Science and Technology, 2013, 15(3): 235-239. DOI: 10.1088/1009-0630/15/3/09 |
1. | Liu, Y., Li, W., Zhang, Y. et al. Development of a real-time tangential dispersion interferometer system and its first results for density feedback on EAST. Fusion Engineering and Design, 2025. DOI:10.1016/j.fusengdes.2025.114930 |
2. | Zhang, J., Yao, Y., Liu, Y. et al. Real-time data processing method for CO2 dispersion interferometer on EAST. Plasma Science and Technology, 2024, 26(8): 085603. DOI:10.1088/2058-6272/ad4597 |
3. | Zhang, W., Wu, T.Y., Li, Y.G. et al. High-precision digital time-amplitude analysis system for the neutron Time-Of-Flight spectrometer in HL-2M. Journal of Instrumentation, 2023, 18(9): P09014. DOI:10.1088/1748-0221/18/09/P09014 |
4. | Wen, X., Zhu, R., He, Z. et al. Development of a novel simulated neutron pulse signal generator for flux measurement. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2022. DOI:10.1016/j.nima.2022.166998 |
5. | Zhang, W., Wu, T.Y., Li, Y.G. et al. Compact phase comparison system for the synthetic HCOOH laser diagnostic system in HL-2A. Journal of Instrumentation, 2022, 17(9): P09037. DOI:10.1088/1748-0221/17/09/P09037 |
6. | Zhang, W., Wu, T.Y., Li, Y.G. et al. An FFT overlap method for high bandwidth far-infrared laser Interferometer in HL-2A. Journal of Instrumentation, 2021, 16(9): P09010. DOI:10.1088/1748-0221/16/09/P09010 |