Processing math: 100%
Advanced Search+
Ping XU, Yi YU, Haiyang ZHOU. Fabrication of a single-crystal diamond neutron detector and its application in 14.1 MeV neutron detection in deuterium–tritium fusion experiments[J]. Plasma Science and Technology, 2023, 25(7): 075101. DOI: 10.1088/2058-6272/acb48a
Citation: Ping XU, Yi YU, Haiyang ZHOU. Fabrication of a single-crystal diamond neutron detector and its application in 14.1 MeV neutron detection in deuterium–tritium fusion experiments[J]. Plasma Science and Technology, 2023, 25(7): 075101. DOI: 10.1088/2058-6272/acb48a

Fabrication of a single-crystal diamond neutron detector and its application in 14.1 MeV neutron detection in deuterium–tritium fusion experiments

More Information
  • Corresponding author:

    Yi YU, E-mail: yuyi56@mail.sysu.edu.cn

  • Received Date: September 16, 2022
  • Revised Date: January 15, 2023
  • Accepted Date: January 17, 2023
  • Available Online: December 05, 2023
  • Published Date: April 04, 2023
  • A single-crystal diamond detector is fabricated to diagnose 14.1 MeV deuterium–tritium (D-T) fusion neutrons. The size of its diamond film is 4.5 mm × 4.5 mm × 500 μm. This film is sandwiched by a flat, strip-patterned gold electrode. The dark current of this detector is experimentally measured to be lower than 0.1 nA under an electric field of 30 kV cm−1. This diamond detector is used to measure D-T fusion neutrons with a flux of about 7.5 × 105 s–1 cm–2. The pronounced peak with a central energy of 8.28 MeV characterizing the 12C(n,α)9Be reaction in the neutron energy spectrum is experimentally diagnosed, and the energy resolution is better than 1.69%, which is the best result reported so far using a diamond detector. A clear peak with a central energy of 6.52 MeV characterizing the 12C(n,n)3α reaction is also identified with an energy resolution of better than 7.67%.

  • The authors thank Dr M. Yin from the Southwestern Institute of Physics for help with MCNP-4C code simulation. This work was supported by National Natural Science Foundation of China (No. 12075241).

  • [1]
    Shvyd'ko Y et al 2011 Nat. Photonics 5 539 doi: 10.1038/nphoton.2011.197
    [2]
    Coe S E et al 2000 Diam. Relat. Mater. 9 1762 doi: 10.1016/S0925-9635(00)00294-6
    [3]
    Bergonzo P et al 2001 Diam. Relat. Mater. 10 631 doi: 10.1016/S0925-9635(00)00554-9
    [4]
    Grubel G et al 1995 Rev. Sci. Instrum. 66 1687 doi: 10.1063/1.1145883
    [5]
    Terentyev S et al 2016 Rev. Sci. Instrum. 87 125117 doi: 10.1063/1.4973326
    [6]
    Wan Y X et al 2017 Nucl. Fusion 57 102009 doi: 10.1088/1741-4326/aa686a
    [7]
    Nemtsev G et al 2016 Rev. Sci. Instrum. 87 11D835 doi: 10.1063/1.4962190
    [8]
    Dankowski J et al 2017 Diam. Relat. Mater. 79 88 doi: 10.1016/j.diamond.2017.08.016
    [9]
    Obraztsova O et al 2018 IEEE Trans. Nucl. Sci. 65 2380 doi: 10.1109/TNS.2018.2848469
    [10]
    Kavrigin P et al 2017 EPJ Web Conf. 146 11036 doi: 10.1051/epjconf/201714611036
    [11]
    Almaviva S et al 2008 J. Appl. Phys. 103 054501 doi: 10.1063/1.2838208
    [12]
    Cazzaniga C et al 2014 Rev. Sci. Instrum. 85 11E101 doi: 10.1063/1.4885356
    [13]
    Nemanich R J et al 1988 J. Vac. Sci. Technol. A 6 1783 doi: 10.1116/1.575297
    [14]
    Finders J M et al 2009 J. Micro/Nanolithogr. MEMS MOEMS 8 011002 doi: 10.1117/1.3079349
    [15]
    Elevant T et al 1986 Rev. Sci. Instrum. 57 1763 doi: 10.1063/1.1139174
    [16]
    Pillon M, Angelone M and Krasilniko A V 1996 Radiat. Prot. Dosim. 66 371 doi: 10.1093/oxfordjournals.rpd.a031757
    [17]
    Kaneko J et al 1999 Rev. Sci. Instrum. 70 1100 doi: 10.1063/1.1149494
    [18]
    Philip O et al 2017 IEEE Trans. Nucl. Sci. 64 2683 doi: 10.1109/TNS.2017.2742468
    [19]
    2003 MCNP - a general purpose Monte Carlo N-particle transport code, v. 5, vol. II User's guide USA: LANL
    [20]
    Kaneko J H et al 2004 Rev. Sci. Instrum. 75 3581 doi: 10.1063/1.1787918
    [21]
    Hodgson M et al 2017 Nucl. Instrum. Methods Phys. Res. A 847 1 doi: 10.1016/j.nima.2016.11.006
    [22]
    Hodgson M et al 2017 Meas. Sci. Technol. 28 105501 doi: 10.1088/1361-6501/aa7f8b
    [23]
    Angelone M et al 2006 Radiat. Prot. Dosim. 120 345 doi: 10.1093/rpd/nci634
    [24]
    Kumar A et al 2017 Nucl. Instrum. Method. Phys. Res. A 858 12 doi: 10.1016/j.nima.2017.03.033
    [25]
    Lee C Y et al 2019 Appl. Rad. Isotopes 152 25 doi: 10.1016/j.apradiso.2019.06.025
    [26]
    Claps G et al 2018 IEEE Trans. Nucl. Sci. 65 2743 doi: 10.1109/TNS.2018.2871605
    [27]
    Isberg J et al 2002 Science 297 1670 doi: 10.1126/science.1074374
    [28]
    Pan L S et al 1993 J. Appl. Phys. 74 1086 doi: 10.1063/1.354957
    [29]
    ITER Physics Basis Editors et al 1999 Nucl. Fusion 39 2137 doi: 10.1088/0029-5515/39/12/301
  • Related Articles

    [1]Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602
    [2]Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b
    [3]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [4]Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a
    [5]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [6]Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
    [7]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [8]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), JIANG Yongfeng (蒋永锋), CHEN Longwei (陈龙威), GAO Yuan (高远), HAN Qingbang (韩庆邦). Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray[J]. Plasma Science and Technology, 2016, 18(1): 41-50. DOI: 10.1088/1009-0630/18/1/08
    [9]CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04
    [10]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
  • Cited by

    Periodical cited type(9)

    1. Akash, R., Sarathi, R., Haddad, M. Pollution Monitoring on Polymeric Insulators Adopting Laser-Induced Breakdown Spectroscopy, Computer Vision, and Machine Learning Techniques. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3539261
    2. Zhang, R., Hu, S., Ma, C. et al. Laser-induced breakdown spectroscopy (LIBS) in biomedical analysis. TrAC - Trends in Analytical Chemistry, 2024. DOI:10.1016/j.trac.2024.117992
    3. Yin, R., Qiao, Y., Wang, J. et al. Precise Testing Technology of Aluminum Based on SAF-LIBS Theory | [基于 SAF-LIBS 理论的铝精密检测技术研究]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(17): 1711001. DOI:10.3788/CJL231557
    4. Xie, W., Fu, G., Xu, J. et al. Evaluation of Sample Preparation Methods for the Classification of Children’s Ca–Fe–Zn Oral Liquid by Libs. Journal of Applied Spectroscopy, 2024, 91(1): 209-217. DOI:10.1007/s10812-024-01708-w
    5. Zhou, F., Xie, W., Lin, M. et al. Rapid authentication of geographical origins of Baishao (Radix Paeoniae Alba) slices with laser-induced breakdown spectroscopy based on conventional machine learning and deep learning. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2023.106852
    6. Peng, J., Lin, M., Xie, W. et al. Fast identification of geographical origins of Baishao (Radix Paeoniae Alba) using the deep fusion of LIBS spectrum and ablation image. Microchemical Journal, 2023. DOI:10.1016/j.microc.2023.109337
    7. Wei, K., Teng, G., Wang, Q. et al. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods, 2023, 12(8): 1710. DOI:10.3390/foods12081710
    8. Wei, K., Wang, Q., Teng, G. et al. Application of Laser-Induced Breakdown Spectroscopy Combined with Chemometrics for Identification of Penicillin Manufacturers. Applied Sciences (Switzerland), 2022, 12(10): 4981. DOI:10.3390/app12104981
    9. Hu, M., Ma, F., Li, Z. et al. Sensing of Soil Organic Matter Using Laser-Induced Breakdown Spectroscopy Coupled with Optimized Self-Adaptive Calibration Strategy. Sensors, 2022, 22(4): 1488. DOI:10.3390/s22041488

    Other cited types(0)

Catalog

    Figures(6)

    Article views (51) PDF downloads (224) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return