Advanced Search+
Dandan ZOU, Chensheng TU, Chunmei CUI. Helical streamers guided by surface electromagnetic standing waves[J]. Plasma Science and Technology, 2023, 25(7): 072001. DOI: 10.1088/2058-6272/acb876
Citation: Dandan ZOU, Chensheng TU, Chunmei CUI. Helical streamers guided by surface electromagnetic standing waves[J]. Plasma Science and Technology, 2023, 25(7): 072001. DOI: 10.1088/2058-6272/acb876

Helical streamers guided by surface electromagnetic standing waves

More Information
  • Corresponding author:

    Dandan ZOU, E-mail: ddzou@ecjtu.edu.cn

  • Received Date: October 31, 2022
  • Revised Date: February 01, 2023
  • Accepted Date: February 01, 2023
  • Available Online: December 05, 2023
  • Published Date: April 03, 2023
  • The streamer that is driven by the specific pulse DC discharge parameters can stably form a three-dimensional helical plasma channel in a long dielectric tube in the low-temperature plasma experiment, in cases when there were neither external background magnetic field or other factors that destroyed the poloidal symmetry of the tube. The formation mechanism and chirality of helical streamers are discussed according to the surface electromagnetic standing wave theory. The shape of the helical streamers and the characteristics of helical branches are quantitatively analyzed to further expand the application of plasma and streamer theory in the helix problem and chiral catalytic synthesis.

  • This work was supported by National Natural Science Foundation of China (Nos. 12005061, 12065019), and the Natural Science Foundation of Jiangxi Province (No. 20202BABL214036).

  • [1]
    Raizer Y P and Allen J E 1991 Gas Discharge Physics (Berlin: Springer)
    [2]
    Arrayás M, Ebert U and Hundsdorfer W 2002 Phys. Rev. Lett. 88 174502 doi: 10.1103/PhysRevLett.88.174502
    [3]
    Lu X et al 2014 Phys. Rep. 540 123 doi: 10.1016/j.physrep.2014.02.006
    [4]
    Lagarkov A N and Rutkevich I M 2012 Ionization Waves in Electrical Breakdown of Gases (New York: Springer)
    [5]
    Qiu Y et al 2016 IEEE Trans. Plasma Sci. 44 2608 doi: 10.1109/TPS.2016.2598551
    [6]
    Xian Y B et al 2013 Appl. Phys. Lett. 103 094103 doi: 10.1063/1.4820148
    [7]
    Wu S et al 2013 Phys. Plasmas 20 023503 doi: 10.1063/1.4791652
    [8]
    Liu L J et al 2014 Appl. Phys. Lett. 104 244108 doi: 10.1063/1.4884939
    [9]
    Darny T et al 2014 IEEE Trans. Plasma Sci. 42 2506 doi: 10.1109/TPS.2014.2324823
    [10]
    Xia G Q et al 2015 IEEE Trans. Plasma Sci. 43 1825 doi: 10.1109/TPS.2015.2420119
    [11]
    Zou D D et al 2015 Phys. Plasmas 22 103517 doi: 10.1063/1.4934603
    [12]
    Nie L L et al 2018 Phys. Plasmas 25 053507 doi: 10.1063/1.5016444
    [13]
    Liu F et al 2018 J. Phys. D: Appl. Phys. 51 294003 doi: 10.1088/1361-6463/aacd62
    [14]
    Jin S et al 2019 Phys. Plasmas 26 093507 doi: 10.1063/1.5120288
    [15]
    Grande C and Patel N H 2009 Nature 457 1007 doi: 10.1038/nature07603
    [16]
    Yachmenev A et al 2019 Phys. Rev. Lett. 123 243202 doi: 10.1103/PhysRevLett.123.243202
    [17]
    Ammelt E, Astrov Y A and Purwings H G 1998 Phys. Rev. E 58 7109 doi: 10.1103/PhysRevE.58.7109
    [18]
    Allen T K, Paulikas G A and Pyle R V 1960 Phys. Rev. Lett. 5 409 doi: 10.1103/PhysRevLett.5.409
    [19]
    Hu Y B et al 2020 J. Appl. Phys. 128 043301 doi: 10.1063/1.5131164
    [20]
    Takahashi K et al 2016 Phys. Rev. Lett. 116 135001 doi: 10.1103/PhysRevLett.116.135001
    [21]
    Lieberman M A et al 2002 Plasma Sources Sci. Technol. 11 283 doi: 10.1088/0963-0252/11/3/310
    [22]
    Zhao K et al 2019 Phys. Rev. Lett. 122 185002 doi: 10.1103/PhysRevLett.122.185002
    [23]
    Borg G G et al 2000 Phys. Plasmas 7 2198 doi: 10.1063/1.874041
    [24]
    Jambon-Puillet E et al 2019 Phys. Rev. Lett. 122 184501 doi: 10.1103/PhysRevLett.122.184501
    [25]
    Xiong Q et al 2011 IEEE Trans. Plasma Sci. 39 2094 doi: 10.1109/TPS.2011.2157922
  • Related Articles

    [1]Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602
    [2]Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b
    [3]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [4]Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a
    [5]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [6]Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
    [7]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [8]CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), JIANG Yongfeng (蒋永锋), CHEN Longwei (陈龙威), GAO Yuan (高远), HAN Qingbang (韩庆邦). Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray[J]. Plasma Science and Technology, 2016, 18(1): 41-50. DOI: 10.1088/1009-0630/18/1/08
    [9]CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04
    [10]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
  • Cited by

    Periodical cited type(9)

    1. Akash, R., Sarathi, R., Haddad, M. Pollution Monitoring on Polymeric Insulators Adopting Laser-Induced Breakdown Spectroscopy, Computer Vision, and Machine Learning Techniques. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3539261
    2. Zhang, R., Hu, S., Ma, C. et al. Laser-induced breakdown spectroscopy (LIBS) in biomedical analysis. TrAC - Trends in Analytical Chemistry, 2024. DOI:10.1016/j.trac.2024.117992
    3. Yin, R., Qiao, Y., Wang, J. et al. Precise Testing Technology of Aluminum Based on SAF-LIBS Theory | [基于 SAF-LIBS 理论的铝精密检测技术研究]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(17): 1711001. DOI:10.3788/CJL231557
    4. Xie, W., Fu, G., Xu, J. et al. Evaluation of Sample Preparation Methods for the Classification of Children’s Ca–Fe–Zn Oral Liquid by Libs. Journal of Applied Spectroscopy, 2024, 91(1): 209-217. DOI:10.1007/s10812-024-01708-w
    5. Zhou, F., Xie, W., Lin, M. et al. Rapid authentication of geographical origins of Baishao (Radix Paeoniae Alba) slices with laser-induced breakdown spectroscopy based on conventional machine learning and deep learning. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2023.106852
    6. Peng, J., Lin, M., Xie, W. et al. Fast identification of geographical origins of Baishao (Radix Paeoniae Alba) using the deep fusion of LIBS spectrum and ablation image. Microchemical Journal, 2023. DOI:10.1016/j.microc.2023.109337
    7. Wei, K., Teng, G., Wang, Q. et al. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods, 2023, 12(8): 1710. DOI:10.3390/foods12081710
    8. Wei, K., Wang, Q., Teng, G. et al. Application of Laser-Induced Breakdown Spectroscopy Combined with Chemometrics for Identification of Penicillin Manufacturers. Applied Sciences (Switzerland), 2022, 12(10): 4981. DOI:10.3390/app12104981
    9. Hu, M., Ma, F., Li, Z. et al. Sensing of Soil Organic Matter Using Laser-Induced Breakdown Spectroscopy Coupled with Optimized Self-Adaptive Calibration Strategy. Sensors, 2022, 22(4): 1488. DOI:10.3390/s22041488

    Other cited types(0)

Catalog

    Figures(5)

    Article views (156) PDF downloads (20587) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return