Citation: | Yunming TAO, Yuebing XU, Kuan CHANG, Meiling CHEN, Sergey A STAROSTIN, Hujun XU, Liangliang LIN. Dielectric barrier discharge plasma synthesis of Ag/γ-Al2O3 catalysts for catalytic oxidation of CO[J]. Plasma Science and Technology, 2023, 25(8): 085504. DOI: 10.1088/2058-6272/acc14c |
In this study, Ag/γ-Al2O3 catalysts were synthesized by an Ar dielectric barrier discharge plasma using silver nitrate as the Ag source and γ-alumina (γ-Al2O3) as the support. It is revealed that plasma can reduce silver ions to generate crystalline silver nanoparticles (AgNPs) of good dispersion and uniformity on the alumina surface, leading to the formation of Ag/γ-Al2O3 catalysts in a green manner without traditional chemical reductants. Ag/γ-Al2O3 exhibited good catalytic activity and stability in CO oxidation reactions, and the activity increased with increase in the Ag content. For catalysts with more than 2 wt% Ag, 100% CO conversion can be achieved at 300 °C. The catalytic activity of the Ag/γ-Al2O3 catalysts is also closely related to the size of the γ-alumina, where Ag/nano-γ-Al2O3 catalysts demonstrate better performance than Ag/micro-γ-Al2O3 catalysts with the same Ag content. In addition, the catalytic properties of plasma-generated Ag/nano-γ-Al2O3 (Ag/γ-Al2O3-P) catalysts were compared with those of Ag/nano-γ-Al2O3 catalysts prepared by the traditional calcination approach (Ag/γ-Al2O3-C), with the plasma-generated samples demonstrating better overall performance. This simple, rapid and green plasma process is considered to be applicable for the synthesis of diverse noble metal-based catalysts.
We would like to acknowledge financial support from National Natural Science Foundation of China (Nos. 52004102 and 22078125), Postdoctoral Science Foundation of China (No. 2021M690068), Fundamental Research Funds for the Central Universities (Nos. JUSRP221018 and JUSRP622038), Key Laboratory of Green Cleaning Technology and Detergent of Zhejiang Province (No. Q202204) and Open Project of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (No. GCP202112).
Supplementary material for this article is available https://doi.org/10.1088/2058-6272/acc14c
[1] |
Védrine J C 2017 Catalysts
7 341 doi: 10.3390/catal7110341
|
[2] |
García-Serna J Piñero-Hernanz R Durán-Martín D 2022 Catal. Today
387 237 doi: 10.1016/j.cattod.2021.11.021
|
[3] |
Witoon T et al 2022 Chem. Eng. J.
428 131389 doi: 10.1016/j.cej.2021.131389
|
[4] |
Marek E J García-Calvo Conde E 2021 Chem. Eng. J.
417 127981 doi: 10.1016/j.cej.2020.127981
|
[5] |
Chen Y, Qian S and Feng K 2022 Chem. Eng. Sci.
253 117597 doi: 10.1016/j.ces.2022.117597
|
[6] |
Wu K J Bohan G M D V Torrente-Murciano L 2017 React. Chem. Eng.
2 116 doi: 10.1039/C6RE00202A
|
[7] |
Ahmed J et al 2022 Powder Technol.
412 117975 doi: 10.1016/j.powtec.2022.117975
|
[8] |
Zhang X L et al 2021 Chem. Eng. Sci.
238 116588 doi: 10.1016/j.ces.2021.116588
|
[9] |
Ma X T et al 2020 Chem. Eng. Sci.
220 115648 doi: 10.1016/j.ces.2020.115648
|
[10] |
Lin L L et al 2021 J. Taiwan Inst. Chem. Eng.
122 311 doi: 10.1016/j.jtice.2021.04.061
|
[11] |
Li X H et al 2022 React. Chem. Eng.
7 346 doi: 10.1039/D1RE00446H
|
[12] |
Li X H, Zhao C-X and Lin L L 2022 Chem. Eng. Sci.
260 117849 doi: 10.1016/j.ces.2022.117849
|
[13] |
Lin L L et al 2022 Ind. Eng. Chem. Res.
61 2183 doi: 10.1021/acs.iecr.1c04048
|
[14] |
Lin L L et al 2021 Chem. Eng. J.
417 129355 doi: 10.1016/j.cej.2021.129355
|
[15] |
SriBala G et al 2019 J. Clean. Prod.
209 655 doi: 10.1016/j.jclepro.2018.10.203
|
[16] |
Delikonstantis E et al 2022 ACS Energy Lett.
7 1896902 doi: 10.1021/acsenergylett.2c00632
|
[17] |
Rui L C et al 2022 Chem. Eng. Res. Des.
186 125 doi: 10.1016/j.cherd.2022.07.038
|
[18] |
Di L B et al 2016 Plasma Sci. Technol.
18 544 doi: 10.1088/1009-0630/18/5/17
|
[19] |
Wang B W et al 2019 Plasma Sci. Technol.
21 065503 doi: 10.1088/2058-6272/ab079c
|
[20] |
Ji H H, Lin L L and Chang K 2023 J. CO2 Util.
68 102351 doi: 10.1016/j.jcou.2022.102351
|
[21] |
Liu Y et al 2020 Plasma Sci. Technol.
22 034016 doi: 10.1088/2058-6272/ab69bc
|
[22] |
Li Y et al 2023 Fuel Process. Technol.
242 107655 doi: 10.1016/j.fuproc.2023.107655
|
[23] |
Xu S et al 2020 ACS Catal.
10 12828 doi: 10.1021/acscatal.0c03620
|
[24] |
Han S W et al 2016 Chem. Eng. J.
283 99 doi: 10.1016/j.cej.2015.08.021
|
[25] |
Zhou Y, Wang Z Y and Liu C J 2014 Catal. Sci. Technol.
5 69 doi: 10.1039/C4CY00983E
|
[26] |
Sun T et al 2022 Ind. Eng. Chem. Res.
61 152 doi: 10.1021/acs.iecr.1c02447
|
[27] |
Lee K et al 2021 J. Ind. Eng. Chem.
93 461 doi: 10.1016/j.jiec.2020.10.026
|
[28] |
Xu H et al 2019 Mater. Lett.
255 126532 doi: 10.1016/j.matlet.2019.126532
|
[29] |
Lin L L et al 2019 React. Chem. Eng.
4 891 doi: 10.1039/C8RE00357B
|
[30] |
Wang J L, Ando R A and Camargo P H C 2014 ACS Catal.
4 3815 doi: 10.1021/cs501189m
|
[31] |
Ma C et al 2019 Ind. Eng. Chem. Res.
58 1848 doi: 10.1021/acs.iecr.8b05230
|
[32] |
Wang F et al 2019 ACS Catal.
9 1437 doi: 10.1021/acscatal.8b03744
|
[33] |
Jing X et al 2014 RSC Adv.
4 27597 doi: 10.1039/C4RA03312D
|
[34] |
Lin L L and Wang Q 2015 Plasma Chem. Plasma P.
35 925 doi: 10.1007/s11090-015-9640-y
|
[35] |
Neyts E C et al 2015 Chem. Rev.
115 13408 doi: 10.1021/acs.chemrev.5b00362
|
[36] |
Whitehead J C 2019 Front. Chem. Sci. Eng.
13 264 doi: 10.1007/s11705-019-1794-3
|
[37] |
Bogaerts A et al 2020 Phys. D: Appl. Phys.
53 443001 doi: 10.1088/1361-6463/ab9048
|
[38] |
Girard-Sahun F et al 2022 Chem. Eng. J.
442 136268 doi: 10.1016/j.cej.2022.136268
|
[39] |
Weltmann K-D et al 2019 Plasma Process Polym.
16 1800118 doi: 10.1002/ppap.201800118
|
[40] |
Ma S et al 2022 Chem. Eng. J.
435 134859 doi: 10.1016/j.cej.2022.134859
|
[41] |
Camposeco R Zanella R 2022 Environ. Sci. Pollut. Res.
29 76992 doi: 10.1007/s11356-022-21076-2
|
[42] |
Koo K Y, Jung U H and Yoon W L 2014 Int. J. Hydrogen Energ.
39 5696 doi: 10.1016/j.ijhydene.2014.01.128
|
[1] | Tao ZHU (竹涛), Xing ZHANG (张星), Nengjing YI (伊能静), Haibing LIU (刘海兵), Zhenguo LI (李振国). NOx storage and reduction assisted by non-thermal plasma over Co/Pt/Ba/γ-Al2O3 catalyst using CH4 as reductant[J]. Plasma Science and Technology, 2021, 23(2): 25506-025506. DOI: 10.1088/2058-6272/abd620 |
[2] | Yanghaichao LIU (刘杨海超), Liping LIAN (连莉萍), Weixuan ZHAO(赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇). DBD coupled with MnOx/γ-Al2O3 catalysts for the degradation of chlorobenzene[J]. Plasma Science and Technology, 2020, 22(3): 34016-034016. DOI: 10.1088/2058-6272/ab69bc |
[3] | Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c |
[4] | Zhuang LI (李壮), Xiuling ZHANG (张秀玲), Yuzhuo ZHANG (张玉卓), Dongzhi DUAN (段栋之), Lanbo DI (底兰波). Hydrogen cold plasma for synthesizing Pd/C catalysts: the effect of support–metal ion interaction[J]. Plasma Science and Technology, 2018, 20(1): 14016-014016. DOI: 10.1088/2058-6272/aa7f27 |
[5] | Zhiyu YAN (严志宇), Xin WANG (王鑫), Bing SUN (孙冰), Mi WEN (文密), Yue HAN (韩月). Catalytic technology for water treatment by micro arc oxidation on Ti–Al alloy[J]. Plasma Science and Technology, 2017, 19(3): 35501-035501. DOI: 10.1088/2058-6272/19/3/035501 |
[6] | DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17 |
[7] | GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09 |
[8] | XIONG Yuqing, SANG Lijun, CHEN Qiang, YANG Lizhen, WANG Zhengduo, LIU Zhongwei. Electron Cyclotron Resonance Plasma-Assisted Atomic Layer Deposition of Amorphous Al2O3 Thin Films[J]. Plasma Science and Technology, 2013, 15(1): 52-55. DOI: 10.1088/1009-0630/15/1/09 |
[9] | CHEN Shaowen(陈少文), ZHANG Wenlan(张文澜), FAN Lixian(范丽仙), TANG Qiang(唐强), LIU Xiaowei(刘小伟). The Effect of the Size of Radiotherapy Photon Beams on the Absorbed Dose to an Al2O3 Dosimeter[J]. Plasma Science and Technology, 2012, 14(6): 558-562. DOI: 10.1088/1009-0630/14/6/28 |
[10] | LEI Wenwen(雷雯雯), LI Xingcun(李兴存), CHEN Qiang (陈强), WANG Zhengduo(王正铎). Plasma-Assisted ALD of an Al2O3 Permeation Barrier Layer on Plastic[J]. Plasma Science and Technology, 2012, 14(2): 129-133. DOI: 10.1088/1009-0630/14/2/09 |