Processing math: 100%
Advanced Search+
Minyong SHEN, Jibo ZHANG, Yao ZHANG, Yinxian JIE, Haiqing LIU, Jinlin XIE, Weixing DING. Forward modelling of the Cotton-Mouton effect polarimetry on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034015. DOI: 10.1088/2058-6272/ad15df
Citation: Minyong SHEN, Jibo ZHANG, Yao ZHANG, Yinxian JIE, Haiqing LIU, Jinlin XIE, Weixing DING. Forward modelling of the Cotton-Mouton effect polarimetry on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034015. DOI: 10.1088/2058-6272/ad15df

Forward modelling of the Cotton-Mouton effect polarimetry on EAST tokamak

More Information
  • Author Bio:

    Weixing DING: wxding@ustc.edu.cn

  • Corresponding author:

    Weixing DING, wxding@ustc.edu.cn

  • Received Date: July 12, 2023
  • Revised Date: December 10, 2023
  • Accepted Date: December 11, 2023
  • Available Online: April 14, 2024
  • Published Date: March 13, 2024
  • Measurement of plasma electron density by far-infrared laser polarimetry has become a routine and indispensable tool in magnetic confinement fusion research. This article presents the design of a Cotton-Mouton polarimeter interferometer, which provides a reliable density measurement without fringe jumps. Cotton-Mouton effect on Experimental Advanced Superconducting Tokamak (EAST) is studied by Stokes equation with three parameters (s1,s2,s3). It demonstrates that under the condition of a small Cotton-Mouton effect, parameter s2 contains information about Cotton-Mouton effect which is proportional to the line-integrated density. For a typical EAST plasma, the magnitude of Cotton-Mouton effects is less than 2π for laser wavelength of 432 μm. Refractive effect due to density gradient is calculated to be negligible. Time modulation of Stokes parameters (s2, s3) provides heterodyne measurement. Due to the instabilities arising from laser oscillation and beam refraction in plasmas, it is necessary for the system to be insensitive to variations in the amplitude of the detection signal. Furthermore, it is shown that non-equal amplitude of X-mode and O-mode within a certain range only affects the DC offset of Stokes parameters (s2,s3) but does not greatly influence the phase measurements of Cotton-Mouton effects.

  • [1]
    Brombin M et al 2008 Rev. Sci. Instrum. 79 10F701 doi: 10.1063/1.3001671
    [2]
    Liu H Q et al 2014 Rev. Sci. Instrum. 85 1939 doi: 10.1063/1.4889777
    [3]
    Hutchinson I H 2002 Principles of Plasma Diagnostics 2nd (Cambridge: Cambridge University Press
    [4]
    Akiyama T et al 2006 Rev. Sci. Instrum. 77 10 doi: 10.1063/1.2229275
    [5]
    Donné A J H 1995 Rev. Sci. Instrum. 66 3407 doi: 10.1063/1.1145516
    [6]
    Boboc A 2006 Rev. Sci. Instrum. 77 10F324 doi: 10.1063/1.2229169
    [7]
    Akiyama T et al 2015 Nucl. Fusion 55 093032 doi: 10.1088/0029-5515/55/9/093032
    [8]
    Zhang J 2013 Study of internal magnetic field via polarimetry in fusion plasmas PhD Thesis University of California, Los Angeles, USA
    [9]
    Donné A J H et al 2004 Rev. Sci. Instrum. 75 4694 doi: 10.1063/1.1804372
    [10]
    Chipman R A et al 2018 Polarized light and optical systems (CRC press
    [11]
    Bergerson W F et al 2012 Rev. Sci. Instrum. 83 4694 doi: 10.1063/1.4731757
    [12]
    Born M et al 2013 Principles of optics (Elsevier
    [13]
    Liu H Q et al 2013 J. Inst. 8 C11002 doi: 10.1088/1748-0221/8/11/C11002
    [14]
    Segre S E 2006 Plasma Phys. Control. Fusion 41 339 doi: 10.1088/0741-3335/48/3/001
    [15]
    Roy-Brehonnet F L et al 1997 Prog. Quant. Electr. 21 109 doi: 10.1016/S0079-6727(97)84687-3
    [16]
    Huard S et al 1997 Polarization of Light (Chichester: Wiley
    [17]
    Segre S E 1999 Plasma Phys. Control. Fusion 41 R57 doi: 10.1088/0741-3335/41/2/001
    [18]
    Azzam R M A et al 1979 Ellipsometry and Polarized Light (Amsterdam: North-Holland
    [19]
    Guenther K et al 2004 Plasma Phys. Control. Fusion 46 1423 doi: 10.1088/0741-3335/46/9/006
    [20]
    Segre S E 1995 Physics of Plasmas 2 2908 doi: 10.1063/1.871190
    [21]
    Goldstein D et al 2003 Polarized Light, Revised and Expanded (CRC Press
    [22]
    Imazawa R et al 2012 Plasma Phys. Control. Fusion 54 055005 doi: 10.1088/0741-3335/54/5/055005
    [23]
    Segre S E 2000 J. Opt. Soc. Am. A 17 95 doi: 10.1364/JOSAA.17.000095
    [24]
    O’Rourke J 1984 Plasma Phys. Control. Fusion 26 1139 doi: 10.1088/0741-3335/26/9/010
    [25]
    Orsitto F P et al 2011 Plasma Phys. Control. Fusion 53 035001 doi: 10.1088/0741-3335/53/3/035001
  • Related Articles

    [1]Haobo Shen, Haiqing Liu, Hui Lian, Yanbin Hao, Shouxin Wang, Haoran Li, Minjie Wan, Xiaofang Kong, Guohua Gu. Density profile reconstruction with PIDP-KAN model training based on polarimeter-interferometer measurement on EAST[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/adca8e
    [2]Hong CHEN (陈鸿), Xuchao PAN (潘绪超), Yong HE (何勇), Junjie JIAO (焦俊杰), Jie SHEN (沈杰), Chi BEN (贲驰). Measurement of time-varying electron density of the plasma generated from a small-size cylindrical RDX explosion by Rayleigh microwave scattering[J]. Plasma Science and Technology, 2021, 23(4): 45401-045401. DOI: 10.1088/2058-6272/abd97b
    [3]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [4]Linghan WAN (万凌寒), Zhoujun YANG (杨州军), Ruobing ZHOU (周若冰), Xiaoming PAN (潘晓明), Chi ZHANG (张弛), Xianli XIE (谢先立), Bowen RUAN (阮博文). Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(2): 25602-025602. DOI: 10.1088/2058-6272/19/2/025602
    [5]LIU Yong (刘永), Stefan SCHMUCK, ZHAO Hailin (赵海林), John FESSEY, Paul TRIMBLE, LIU Xiang (刘祥), ZHU Zeying (朱则英), ZANG Qing (臧庆), HU Liqun (胡立群). A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST[J]. Plasma Science and Technology, 2016, 18(12): 1148-1154. DOI: 10.1088/1009-0630/18/12/02
    [6]NIU Zhiwen (牛志文), WEN Xiaoqiong (温小琼), REN Chunsheng (任春生), QIU Yuliang (邱玉良). Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water[J]. Plasma Science and Technology, 2016, 18(8): 821-825. DOI: 10.1088/1009-0630/18/8/05
    [7]SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02
    [8]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [9]ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02
    [10]F. L. BRAGA. MHD Equilibrium with Reversed Current Density and Magnetic Islands Revisited: the Vacuum Vector Potential Calculus[J]. Plasma Science and Technology, 2013, 15(10): 985-988. DOI: 10.1088/1009-0630/15/10/05
  • Cited by

    Periodical cited type(15)

    1. Liu, Y., Sun, Y., Zhao, H. et al. Particle Evolution of Flexible Pulsed Coplanar Dielectric Barrier Discharge Plasma Sheets and Its Effect on Sterilization. Plasma Processes and Polymers, 2025. DOI:10.1002/ppap.70014
    2. Nie, L., Liu, D., Cheng, H. et al. The state-of-the-art of atmospheric pressure plasma for transdermal drug delivery. Plasma Science and Technology, 2024, 26(4): 043001. DOI:10.1088/2058-6272/ad1044
    3. Tang, X., Zhou, Z., Chen, Y. et al. A pulsed bipolar current-mode power supply with high power factor in a single stage for dielectric barrier discharge application. Circuit World, 2024. DOI:10.1108/CW-06-2023-0138
    4. Maliha, M., Kristof, J., Rimi, S.A. et al. Transdermal administration of adenosine using microplasma and the examination of the effect of microplasma on stratum corneum using infrared spectroscopy. Japanese Journal of Applied Physics, 2023, 62(SL): SL1026. DOI:10.35848/1347-4065/ace6a7
    5. Sun, Y., Zhang, B., Zhao, H. et al. Ionization wave propagation of a surface dielectric barrier discharge with a flexible-structure plasma sheet. Journal of Physics D: Applied Physics, 2023, 56(16): 165205. DOI:10.1088/1361-6463/acbce0
    6. Von Woedtke, T., Laroussi, M., Gherardi, M. Foundations of plasmas for medical applications. Plasma Sources Science and Technology, 2022, 31(5): 054002. DOI:10.1088/1361-6595/ac604f
    7. Metelmann, H.-R., Böttger, K., von Woedtke, T. Cold Plasma Treatment and Aesthetic Medicine. Textbook of Good Clinical Practice in Cold Plasma Therapy, 2022. DOI:10.1007/978-3-030-87857-3_13
    8. Kristof, J., Yokoyama, R., Yahaya, A.G. et al. Absorption of FD-150 into Intestinal Cells by Microplasma. Plasma Medicine, 2022, 12(4): 11-28. DOI:10.1615/PlasmaMed.v12.i4.20
    9. Sun, Y., Zhang, B., Wang, C. et al. Polyimide-Based Flexible Plasma Sheet and Surface Ionization Waves Propagation. Advanced Electronic Materials, 2021, 7(11): 2100369. DOI:10.1002/aelm.202100369
    10. Dascalu, A., Pohoata, V., Shimizu, K. et al. Molecular Species Generated by Surface Dielectric Barrier Discharge Micro-plasma in Small Chambers Enclosing Atmospheric Air and Water Samples. Plasma Chemistry and Plasma Processing, 2021, 41(1): 389-408. DOI:10.1007/s11090-020-10122-x
    11. Ramos, E.A., Lizardi, J.J., Méndez, F. Heating and cooling stages using a doubly conjugate thermal and electric asymptotic analysis between a gel and the stratum corneum. Journal of Physics D: Applied Physics, 2020, 53(45): 455401. DOI:10.1088/1361-6463/aba38e
    12. Von Woedtke, T., Emmert, S., Metelmann, H.-R. et al. Perspectives on cold atmospheric plasma (CAP) applications in medicine. Physics of Plasmas, 2020, 27(7): 070601. DOI:10.1063/5.0008093
    13. Gelker, M., Müller-Goymann, C.C., Viöl, W. Plasma Permeabilization of Human Excised Full-Thickness Skin by μs-and ns-pulsed DBD. Skin Pharmacology and Physiology, 2020, 33(2): 69-76. DOI:10.1159/000505195
    14. Athanasopoulos, D.K., Svarnas, P., Gerakis, A. Cold plasma bullet influence on the water contact angle of human skin surface. Journal of Electrostatics, 2019. DOI:10.1016/j.elstat.2019.103378
    15. Gelker, M., Mrotzek, J., Ichter, A. et al. Influence of pulse characteristics and power density on stratum corneum permeabilization by dielectric barrier discharge. Biochimica et Biophysica Acta - General Subjects, 2019, 1863(10): 1513-1523. DOI:10.1016/j.bbagen.2019.05.014

    Other cited types(0)

Catalog

    Article views (34) PDF downloads (13) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return