Citation: | Hong CHEN (陈鸿), Xuchao PAN (潘绪超), Yong HE (何勇), Junjie JIAO (焦俊杰), Jie SHEN (沈杰), Chi BEN (贲驰). Measurement of time-varying electron density of the plasma generated from a small-size cylindrical RDX explosion by Rayleigh microwave scattering[J]. Plasma Science and Technology, 2021, 23(4): 45401-045401. DOI: 10.1088/2058-6272/abd97b |
[1] |
Cook M A 1958 The Science of High Explosives (New York: Reinhold Publishing Corporation)
|
[2] |
Cook M A and McEwan W S 1958 J. Appl. Phys. 29 1612
|
[3] |
Cook M A, Keyes R T and Udy L L 1960 J. Appl. Phys. 30 1881
|
[4] |
Bauer A, Cook M A and Keyes R T 1961 P. Roy. Soc. A-Math. Phys. 259 5081
|
[5] |
Davis W C and Campbell A W 1960 J. Appl. Phys. 31 1225
|
[6] |
Boswell C J and O’Connor P D 2009 AIP Conf. Proc. 1195 400
|
[7] |
Tasker D G et al 2010 Electromagnetic effects on explosive reaction and plasma, LA-UR-10-01376; LA-UR-10-1376, TRN: US1007967, Los Alamos National Lab, NM, United States 14th Int. Detonation Symp. (April 11, 2010) (Coeur d’Alene, Idaho)
|
[8] |
Satonkina N P 2016 Combust. Expl. Shock Waves 52 488
|
[9] |
Gilev S D and Trubachev A M 2002 Combust. Expl. Shock Waves 38 219
|
[10] |
Ershov A P, Zubkov P I and Luk’yanchikov L A 1977 J. Appl. Mech. Tech. Phys. 18 750
|
[11] |
Ershov A P et al 1980 Megagauss Physics and Technology (Berlin: Springer) (https://doi.org/10.1007/978-1-4684-1048-8_8)
|
[12] |
Harlin J and Nemzek R 2009 Propell. Explos. Pyrot. 34 544
|
[13] |
Kuhl A L, White D A and Kirkendall B A 2014 J. Electromagn. Anal. Appl. 6 280
|
[14] |
Tasker D G, Whitley V H and Johnson C E 2017 AIP Conf. Proc. 1793 060023
|
[15] |
Emery S et al 2017 20th Biennial Conf. of the APS Topical Group on Shock Compression of Condensed Matter (St. Louis, Missouri)
|
[16] |
Elert M et al 2017 AIP Conf. Proc. 1979 050006
|
[17] |
Miles R B, Lempert W R and Forkey J N 2001 Meas. Sci. Technol. 12 R33
|
[18] |
Shneider M N and Miles R B 2005 J. Appl. Phys. 98 033301
|
[19] |
Shashurin A et al 2009 Appl. Phys. Lett. 94 231504
|
[20] |
Shashurin A et al 2010 Appl. Phys. Lett. 96 171502
|
[21] |
Zhang Z L et al 2007 Phys. Rev. Lett. 98 265005
|
[22] |
Wu J F et al 2020 Acta Phys. Sin. 69 075202 (in Chinese)
|
[23] |
Chen Z Q et al 2014 J. Appl. Phys. 116 153303
|
[24] |
Chen Z Q et al 2012 Rev. Sci. Instrum. 83 084701
|
[25] |
Chen Z Q et al 2012 Plasma Sci. Technol. 14 754
|
[26] |
Cook M A 1987 The Science of Industrial Explosives (Beijing: China Coal Industry Publishing House) (in Chinese)
|
[27] |
Orlenko L P 2011 Explosion Physics (Beijing: Science Press) (in Chinese)
|
[28] |
Davydov V Y et al 2014 Combust. Expl. Shock Waves 50 711
|
[29] |
Staver A M, Ershov A P and Lyamkin A I 1984 Combust. Expl. Shock Waves 20 320
|
[30] |
Zel’dovich Y B and Raizer Y P 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena vol I (New York: Academic)
|
[31] |
Zel’dovich Y B and Raizer Y P 1967 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena vol II (New York: Academic)
|
[1] | Bing QI (齐冰), Chunxu QIN (秦春旭), Haikun SHANG (尚海昆), Li XIONG (熊莉). Measurement of He2* density with an auxiliary measuring electrode in atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(8): 85402-085402. DOI: 10.1088/2058-6272/ab15a1 |
[2] | H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3 |
[3] | Feng XU (徐峰), Fang DING (丁芳), Xiahua CHEN (陈夏华), Liang WANG (王亮), Jichan XU (许吉禅), Zhenhua HU (胡振华), Hongmin MAO (毛红敏), Guangnan LUO (罗广南), Zhongshi YANG (杨钟时), Jingbo CHEN (陈竞博), Kedong LI (李克栋). Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor[J]. Plasma Science and Technology, 2018, 20(10): 105102. DOI: 10.1088/2058-6272/aad226 |
[4] | Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d |
[5] | Linghan WAN (万凌寒), Zhoujun YANG (杨州军), Ruobing ZHOU (周若冰), Xiaoming PAN (潘晓明), Chi ZHANG (张弛), Xianli XIE (谢先立), Bowen RUAN (阮博文). Design of Q-band FMCW reflectometry for electron density profile measurement on the Joint TEXT tokamak[J]. Plasma Science and Technology, 2017, 19(2): 25602-025602. DOI: 10.1088/2058-6272/19/2/025602 |
[6] | Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001 |
[7] | NIU Zhiwen (牛志文), WEN Xiaoqiong (温小琼), REN Chunsheng (任春生), QIU Yuliang (邱玉良). Measurement of Temporally and Spatially Resolved Electron Density in the Filament of a Pulsed Spark Discharge in Water[J]. Plasma Science and Technology, 2016, 18(8): 821-825. DOI: 10.1088/1009-0630/18/8/05 |
[8] | SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02 |
[9] | ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12 |
[10] | M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09 |
1. | Cui, Y., Kong, D. Design of High Intensity Electromagnetic Radiation Measurement System in Explosive Field | [爆 炸 场 强 电 磁 辐 射 测 试 系 统 设 计]. Hunan Daxue Xuebao/Journal of Hunan University Natural Sciences, 2024, 51(8): 219-230. DOI:10.16339/j.cnki.hdxbzkb.2024192 | |
2. | Cui, Y., Jiang, J. Analysis method of explosive electromagnetic radiation energy. Propellants, Explosives, Pyrotechnics, 2024, 49(4): e202300276. DOI:10.1002/prep.202300276 | |
3. | Yu, D., Huang, X., Xu, P. Research on explosive electromagnetic field interference analysis based on field-circuit cooperated modeling and simulation. Journal of Computational Electronics, 2024, 23(2): 330-340. DOI:10.1007/s10825-024-02137-w | |
4. | Cui, Y., Jiang, J. Analysis on Anti-Interference Performance of Sensor in Explosive Electromagnetic Environment. IEEE Sensors Journal, 2024, 24(3): 2895-2904. DOI:10.1109/JSEN.2023.3341957 | |
5. | Cui, Y., Jiang, J., Kong, D. Characteristics and variation laws of electromagnetic radiation generated during explosion. Propellants, Explosives, Pyrotechnics, 2024, 49(1): e202300166. DOI:10.1002/prep.202300166 | |
6. | Li, F., Li, J., Zheng, Y. et al. Multispectral Diagnosis of Plasma Electron Temperature Based on Electron Collision Cross Section Model. IEEE Transactions on Plasma Science, 2023, 51(12): 3579-3584. DOI:10.1109/TPS.2023.3341445 | |
7. | Shan, F., Jiao, J.-J., Wang, H.-C. et al. Influence of overdriven detonation on the energy release of aluminized explosives in underwater explosion. Physics of Fluids, 2023, 35(9): 093305. DOI:10.1063/5.0166437 | |
8. | Cui, Y., Kong, D., Jiang, J. Measurement method for electromagnetic radiation generated during a high-capacity warhead explosion. Measurement Science and Technology, 2023, 34(9): 095015. DOI:10.1088/1361-6501/acdab1 | |
9. | Cui, Y., Kong, D., Jiang, J. et al. Research on Electromagnetic Radiation Characteristics of Energetic Materials. Magnetochemistry, 2022, 8(5): 57. DOI:10.3390/magnetochemistry8050057 | |
10. | Cui, Y., Kong, D., Jiang, J. et al. Research on Electromagnetic Radiation Mechanism during Detonation of Energetic Material. Sensors, 2022, 22(7): 2765. DOI:10.3390/s22072765 | |
11. | Cui, Y., Jiang, J., Kong, D. et al. Study on electromagnetic radiation interference caused by rocket fuel. Sensors, 2021, 21(23): 8123. DOI:10.3390/s21238123 |