Processing math: 100%
Advanced Search+
Minyong SHEN, Jibo ZHANG, Yao ZHANG, Yinxian JIE, Haiqing LIU, Jinlin XIE, Weixing DING. Forward modelling of the Cotton-Mouton effect polarimetry on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034015. DOI: 10.1088/2058-6272/ad15df
Citation: Minyong SHEN, Jibo ZHANG, Yao ZHANG, Yinxian JIE, Haiqing LIU, Jinlin XIE, Weixing DING. Forward modelling of the Cotton-Mouton effect polarimetry on EAST tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034015. DOI: 10.1088/2058-6272/ad15df

Forward modelling of the Cotton-Mouton effect polarimetry on EAST tokamak

More Information
  • Author Bio:

    Weixing DING: wxding@ustc.edu.cn

  • Corresponding author:

    Weixing DING, wxding@ustc.edu.cn

  • Received Date: July 12, 2023
  • Revised Date: December 10, 2023
  • Accepted Date: December 11, 2023
  • Available Online: April 14, 2024
  • Published Date: March 13, 2024
  • Measurement of plasma electron density by far-infrared laser polarimetry has become a routine and indispensable tool in magnetic confinement fusion research. This article presents the design of a Cotton-Mouton polarimeter interferometer, which provides a reliable density measurement without fringe jumps. Cotton-Mouton effect on Experimental Advanced Superconducting Tokamak (EAST) is studied by Stokes equation with three parameters (s1,s2,s3). It demonstrates that under the condition of a small Cotton-Mouton effect, parameter s2 contains information about Cotton-Mouton effect which is proportional to the line-integrated density. For a typical EAST plasma, the magnitude of Cotton-Mouton effects is less than 2π for laser wavelength of 432 μm. Refractive effect due to density gradient is calculated to be negligible. Time modulation of Stokes parameters (s2, s3) provides heterodyne measurement. Due to the instabilities arising from laser oscillation and beam refraction in plasmas, it is necessary for the system to be insensitive to variations in the amplitude of the detection signal. Furthermore, it is shown that non-equal amplitude of X-mode and O-mode within a certain range only affects the DC offset of Stokes parameters (s2,s3) but does not greatly influence the phase measurements of Cotton-Mouton effects.

  • [1]
    Brombin M et al 2008 Rev. Sci. Instrum. 79 10F701 doi: 10.1063/1.3001671
    [2]
    Liu H Q et al 2014 Rev. Sci. Instrum. 85 1939 doi: 10.1063/1.4889777
    [3]
    Hutchinson I H 2002 Principles of Plasma Diagnostics 2nd (Cambridge: Cambridge University Press
    [4]
    Akiyama T et al 2006 Rev. Sci. Instrum. 77 10 doi: 10.1063/1.2229275
    [5]
    Donné A J H 1995 Rev. Sci. Instrum. 66 3407 doi: 10.1063/1.1145516
    [6]
    Boboc A 2006 Rev. Sci. Instrum. 77 10F324 doi: 10.1063/1.2229169
    [7]
    Akiyama T et al 2015 Nucl. Fusion 55 093032 doi: 10.1088/0029-5515/55/9/093032
    [8]
    Zhang J 2013 Study of internal magnetic field via polarimetry in fusion plasmas PhD Thesis University of California, Los Angeles, USA
    [9]
    Donné A J H et al 2004 Rev. Sci. Instrum. 75 4694 doi: 10.1063/1.1804372
    [10]
    Chipman R A et al 2018 Polarized light and optical systems (CRC press
    [11]
    Bergerson W F et al 2012 Rev. Sci. Instrum. 83 4694 doi: 10.1063/1.4731757
    [12]
    Born M et al 2013 Principles of optics (Elsevier
    [13]
    Liu H Q et al 2013 J. Inst. 8 C11002 doi: 10.1088/1748-0221/8/11/C11002
    [14]
    Segre S E 2006 Plasma Phys. Control. Fusion 41 339 doi: 10.1088/0741-3335/48/3/001
    [15]
    Roy-Brehonnet F L et al 1997 Prog. Quant. Electr. 21 109 doi: 10.1016/S0079-6727(97)84687-3
    [16]
    Huard S et al 1997 Polarization of Light (Chichester: Wiley
    [17]
    Segre S E 1999 Plasma Phys. Control. Fusion 41 R57 doi: 10.1088/0741-3335/41/2/001
    [18]
    Azzam R M A et al 1979 Ellipsometry and Polarized Light (Amsterdam: North-Holland
    [19]
    Guenther K et al 2004 Plasma Phys. Control. Fusion 46 1423 doi: 10.1088/0741-3335/46/9/006
    [20]
    Segre S E 1995 Physics of Plasmas 2 2908 doi: 10.1063/1.871190
    [21]
    Goldstein D et al 2003 Polarized Light, Revised and Expanded (CRC Press
    [22]
    Imazawa R et al 2012 Plasma Phys. Control. Fusion 54 055005 doi: 10.1088/0741-3335/54/5/055005
    [23]
    Segre S E 2000 J. Opt. Soc. Am. A 17 95 doi: 10.1364/JOSAA.17.000095
    [24]
    O’Rourke J 1984 Plasma Phys. Control. Fusion 26 1139 doi: 10.1088/0741-3335/26/9/010
    [25]
    Orsitto F P et al 2011 Plasma Phys. Control. Fusion 53 035001 doi: 10.1088/0741-3335/53/3/035001
  • Related Articles

    [1]Jiacheng LI (李嘉诚), Zhongzheng HUANG (黄钟政), Dawei LIU (刘大伟), Kuanlei ZHENG (郑宽磊). The enhanced aerosol deposition by bipolar corona discharge arrays[J]. Plasma Science and Technology, 2021, 23(6): 64010-064010. DOI: 10.1088/2058-6272/abf6ad
    [2]Adem ACIR, Esref BAYSAL. Monte Carlo calculations of the incineration of plutonium and minor actinides of laser fusion inertial confinement fusion fission energy (LIFE) engine[J]. Plasma Science and Technology, 2018, 20(7): 75601-075601. DOI: 10.1088/2058-6272/aab3c4
    [3]Linbo GU (顾林波), Yixi CAI (蔡忆昔), Yunxi SHI (施蕴曦), Jing WANG (王静), Xiaoyu PU (濮晓宇), Jing TIAN (田晶), Runlin FAN (樊润林). Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles[J]. Plasma Science and Technology, 2017, 19(11): 115503. DOI: 10.1088/2058-6272/aa7f6e
    [4]Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6
    [5]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [6]CHANG Zhengshi (常正实), YAO Congwei (姚聪伟), ZHANG Guanjun (张冠军). Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet[J]. Plasma Science and Technology, 2016, 18(1): 17-22. DOI: 10.1088/1009-0630/18/1/04
    [7]WU Xingwei(吴兴伟), LI Cong(李聪), ZHANG Chenfei(张辰飞), DING Hongbin(丁洪斌). High-Sensitivity In-Situ Diagnosis of NO 2 Production and Removal in DBD Using Cavity Ring-Down Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 142-148. DOI: 10.1088/1009-0630/16/2/10
    [8]Kenji SAITO, Ryuhei KUMAZAWA, Tetsuo SEKI, Hiroshi KASAHARA, Goro NOMURA, et al. Measurement of Ion Cyclotron Emissions by Using High-Frequency Magnetic Probes in the LHD[J]. Plasma Science and Technology, 2013, 15(3): 209-212. DOI: 10.1088/1009-0630/15/3/03
    [9]WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.
    [10]Sankarsan Mohapatro, B S Rajanikanth. Study of Pulsed Plasma in a Crossed Flow Dielectric Barrier Discharge Reactor for Improvement of NOx Removal in Raw Diesel Engine Exhaust[J]. Plasma Science and Technology, 2011, 13(1): 82-87.

Catalog

    Article views (34) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return