Citation: | Ziming ZHANG, Chuan FANG, Yaoting WANG, Lanyue LUO, Heping LI. Analyses of nonequilibrium transport in atmospheric-pressure direct-current argon discharge under different modes[J]. Plasma Science and Technology, 2024, 26(11): 115402. DOI: 10.1088/2058-6272/ad6705 |
The key plasma parameters under different discharge modes, such as heavy-particle and electron temperatures, electron number density, and nonequilibrium volume of plasmas, play important roles in various applications of gas discharge plasmas. In this study, a self-consistent two-dimensional nonequilibrium fluid model coupled with an external circuit model is established to reveal the mechanisms related to the discharge modes, including the normal glow, abnormal glow, arc, and glow-to-arc transition modes, with an atmospheric-pressure direct-current (DC) argon discharge as a model plasma system. The modeling results show that, under different discharge modes, the most significant difference between the preceding four discharge modes lies in the current and energy transfer processes on the cathode side. On one hand, the current to the cathode surface is mainly delivered by the ions coming from the plasma column under the glow discharge mode due to the low temperature of the solid cathode, whereas the thermionic and secondary electrons emitted from the hot cathode surface play a very important role under the arc mode with a higher cathode surface temperature and higher ion flux toward the cathode. On the other hand, the energy transfer channel on the cathode side changes from mainly heating the solid cathode under the glow mode to simultaneously heating both the solid cathode and plasma column under the arc mode with an increase in the discharge current. Consequently, the power density in the cathode sheath (Pc) was used as a key parameter for judging different discharge modes, and the range of (0.28–1.2) × 1012 W m−3 was determined as a critical window of Pc corresponding to the glow-to-arc-mode transition for the atmospheric-pressure DC argon discharge, which was also verified by comparison with the experimental results in this study and the data in the previous literature.
This work was supported by National Natural Science Foundation of China (No. 12075132).
[1] |
Wang X X and Shashurin A 2017 Plasma Sources Sci. Technol. 26 02LT02 doi: 10.1088/1361-6595/aa52fc
|
[2] |
Pei X K et al 2018 J. Phys. D: Appl. Phys. 51 384001 doi: 10.1088/1361-6463/aad4e9
|
[3] |
Orr K et al 2020 Plasma Sources Sci. Technol. 29 125022 doi: 10.1088/1361-6595/aba989
|
[4] |
Keidar M, Weltmann K D and Macheret S 2021 J. Appl. Phys. 130 080401 doi: 10.1063/5.0065750
|
[5] |
Villarreal-Medina R et al 2023 Plasma Chem. Plasma Process. 43 787 doi: 10.1007/s11090-023-10328-9
|
[6] |
Mariotti D and Sankaran R M 2010 J. Phys. D: Appl. Phys. 43 323001 doi: 10.1088/0022-3727/43/32/323001
|
[7] |
Staack D et al 2005 Plasma Sources Sci. Technol. 14 700 doi: 10.1088/0963-0252/14/4/009
|
[8] |
Schoenbach K H et al 1997 Plasma Sources Sci. Technol. 6 468 doi: 10.1088/0963-0252/6/4/003
|
[9] |
Misra V C, Tiwari N and Ghorui S 2022 Curr. Appl. Phys. 41 92 doi: 10.1016/j.cap.2022.06.013
|
[10] |
Al-Shamma’a A I et al 2001 J. Phys. D: Appl. Phys. 34 2734 doi: 10.1088/0022-3727/34/18/304
|
[11] |
Okuma T et al 2019 IEEE Trans. Plasma Sci. 47 32 doi: 10.1109/TPS.2018.2832286
|
[12] |
Huo W G et al 2012 Phys. Plasmas 19 083502 doi: 10.1063/1.4743012
|
[13] |
Akishev Y et al 2010 J. Phys. D: Appl. Phys. 43 075202 doi: 10.1088/0022-3727/43/7/075202
|
[14] |
Kim D B et al 2011 Phys. Plasmas 18 043503 doi: 10.1063/1.3574256
|
[15] |
Li H P and Chen X 2001 J. Phys. D: Appl. Phys. 34 L99 doi: 10.1088/0022-3727/34/17/102
|
[16] |
Yu L et al 2002 J. Appl. Phys. 91 2678 doi: 10.1063/1.1435421
|
[17] |
Farouk T et al 2006 Plasma Sources Sci. Technol. 15 676 doi: 10.1088/0963-0252/15/4/012
|
[18] |
Farouk T et al 2007 Plasma Sources Sci. Technol. 16 619 doi: 10.1088/0963-0252/16/3/023
|
[19] |
Li G et al 2008 Appl. Phys. Lett. 92 221504 doi: 10.1063/1.2938692
|
[20] |
Ishaq M, Evans M and Ostrikov K 2014 Int. J. Cancer 134 1517 doi: 10.1002/ijc.28323
|
[21] |
Kim S J et al 2010 Appl. Phys. Lett. 97 023702 doi: 10.1063/1.3462293
|
[22] |
Wang L Y et al 2010 J. Appl. Microbiol. 108 851 doi: 10.1111/j.1365-2672.2009.04483.x
|
[23] |
Li H P et al 2008 AIP Conf. Proc. 982 584 doi: 10.1063/1.2897862
|
[24] |
Gao Y W, Francis K and Zhang X H 2022 Food Res. Int. 157 111246 doi: 10.1016/j.foodres.2022.111246
|
[25] |
Varilla C, Marcone M and Annor G A 2020 Foods 9 1435 doi: 10.3390/foods9101435
|
[26] |
Lin S P et al 2022 Appl. Microbiol. Biotechnol. 106 7737 doi: 10.1007/s00253-022-12252-y
|
[27] |
Temmerman E et al 2005 J. Phys. D: Appl. Phys. 38 505 doi: 10.1088/0022-3727/38/4/001
|
[28] |
Sri Devi P and Vijayalakshmi K A 2020 Mater. Today Proc. 26 3604 doi: 10.1016/j.matpr.2019.09.204
|
[29] |
Taranto J, Frochot D and Pichat P 2007 Ind. Eng. Chem. Res. 46 7611 doi: 10.1021/ie0700967
|
[30] |
Khezami L et al 2021 J. Environ. Manage. 299 113588 doi: 10.1016/j.jenvman.2021.113588
|
[31] |
Samukawa S et al 2012 J. Phys. D: Appl. Phys. 45 253001 doi: 10.1088/0022-3727/45/25/253001
|
[32] |
Liao M R et al 2015 Plasma Sci. Technol. 17 743 doi: 10.1088/1009-0630/17/9/05
|
[33] |
Yoon S J and Goo Lee J 2012 Energy Fuels 26 524 doi: 10.1021/ef2013584
|
[34] |
Ju Y G and Sun W T 2015 Prog. Energy Combust. Sci. 48 21 doi: 10.1016/j.pecs.2014.12.002
|
[35] |
Hsu K C and Pfender E 1983 J. Appl. Phys. 54 4359 doi: 10.1063/1.332672
|
[36] |
Hsu K C, Etemadi K and Pfender E 1983 J. Appl. Phys. 54 1293 doi: 10.1063/1.332195
|
[37] |
Murphy A B, Colombo V and Mostaghimi J 2013 J. Phys. D: Appl. Phys. 46 220301 doi: 10.1088/0022-3727/46/22/220301
|
[38] |
Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001 doi: 10.1088/1361-6463/aa76f5
|
[39] |
Gutsol A, Rabinovich A and Fridman A 2011 J. Phys. D: Appl. Phys. 44 274001 doi: 10.1088/0022-3727/44/27/274001
|
[40] |
Takaki K, Kitamura D and Fujiwara T 2000 J. Phys. D: Appl. Phys. 33 1369 doi: 10.1088/0022-3727/33/11/316
|
[41] |
Hsu C C and Wu C Y 2009 J. Phys. D: Appl. Phys. 42 215202 doi: 10.1088/0022-3727/42/21/215202
|
[42] |
Fujiwara T et al 1992 Jpn. J. Appl. Phys. 31 1470 doi: 10.1143/JJAP.31.1470
|
[43] |
Chalmers I D 1971 J. Phys. D: Appl. Phys. 4 1147 doi: 10.1088/0022-3727/4/8/314
|
[44] |
Fujiwara T et al 1996 IEEJ Trans. Fund. Mater. 116 914 doi: 10.1541/ieejfms1990.116.11_914
|
[45] |
Fujiwara T et al 1994 J. Phys. D: Appl. Phys. 27 826 doi: 10.1088/0022-3727/27/4/021
|
[46] |
Takaki K et al 2005 J. Adv. Oxid. Technol. 8 11 doi: 10.1515/jaots-2005-0102
|
[47] |
Arkhipenko V I et al 2002 Plasma Phys. Rep. 28 858 doi: 10.1134/1.1513839
|
[48] |
Saifutdinov A I, Fairushin I I and Kashapov N F 2016 JETP Lett. 104 180 doi: 10.1134/S0021364016150145
|
[49] |
Arkhipenko V I et al 2008 Plasma Sources Sci. Technol. 17 045017 doi: 10.1088/0963-0252/17/4/045017
|
[50] |
Hoshi Y et al 2004 J. Appl. Phys. 95 7607 doi: 10.1063/1.1737808
|
[51] |
Byszewski W W, Budinger A B and Li Y M 1991 J. Illum. Eng. Soc. 20 3 doi: 10.1080/00994480.1991.10748939
|
[52] |
Slepian J 1926 J. Franklin Inst. 201 79 doi: 10.1016/S0016-0032(26)91021-1
|
[53] |
Kristya V I 2008 Bull. Russ. Acad. Sci.: Phys. 72 966 doi: 10.3103/S106287380807023X
|
[54] |
Kristya V I and Tun Y N 2014 Bull. Russ. Acad. Sci.: Phys. 78 549 doi: 10.3103/S1062873814060161
|
[55] |
Eliseev S I et al 2016 IEEE Trans. Plasma Sci. 44 2536 doi: 10.1109/TPS.2016.2557587
|
[56] |
Baeva M, Loffhagen D and Uhrlandt D 2019 Plasma Chem. Plasma Process. 39 1359 doi: 10.1007/s11090-019-10020-x
|
[57] |
Baeva M et al 2019 Plasma Chem. Plasma Process. 39 949 doi: 10.1007/s11090-019-09994-5
|
[58] |
Saifutdinov A I 2021 J. Appl. Phys. 129 093302 doi: 10.1063/5.0033372
|
[59] |
Saifutdinov A I 2022 Plasma Sources Sci. Technol. 31 094008 doi: 10.1088/1361-6595/ac89a7
|
[60] |
Tsonev I et al 2023 Plasma Sources Sci. Technol. 32 054002 doi: 10.1088/1361-6595/acc96c
|
[61] |
Fang C et al 2022 Plasma Sources Sci. Technol. 31 015015 doi: 10.1088/1361-6595/ac2c8d
|
[62] |
Li H P, Ostrikov K and Sun W T 2018 Phys. Rep. 770–772 1 doi: 10.1016/j.physrep.2018.08.002
|
[63] |
Khrabry A et al 2018 Phys. Plasmas 25 013521 doi: 10.1063/1.5007082
|
[64] |
Benilov M S 2009 Plasma Sources Sci. Technol. 18 014005 doi: 10.1088/0963-0252/18/1/014005
|
[65] |
Murphy A B and Arundell C J 1994 Plasma Chem. Plasma Process. 14 451 doi: 10.1007/BF01570207
|
[66] |
Sheridan T E and Goree J 1991 Phys. Fluids B 3 2796 doi: 10.1063/1.859987
|
[67] |
Ellis H W et al 1976 At. Data Nucl. Data Tables 17 177 doi: 10.1016/0092-640X(76)90001-2
|
[68] |
Hsu K C and Pfender E 1983 J. Appl. Phys. 54 3818 doi: 10.1063/1.332606
|
[69] |
Heberlein J, Mentel J and Pfender E 2010 J. Phys. D: Appl. Phys. 43 023001 doi: 10.1088/0022-3727/43/2/023001
|
[70] |
Yuan X H and Raja L L 2003 IEEE Trans. Plasma Sci. 31 495 doi: 10.1109/TPS.2003.815479
|
[71] |
Mladenović Ž et al 2018 Eur. Phys. J. Plus 133 344 doi: 10.1140/epjp/i2018-12187-6
|
[72] |
Wei F Z et al 2013 J. Phys. D: Appl. Phys. 46 505205 doi: 10.1088/0022-3727/46/50/505205
|
[73] |
Wang H X et al 2014 Plasma Chem. Plasma Process. 34 559 doi: 10.1007/s11090-013-9501-5
|
[74] |
Sun S R, Wang H X and Zhu T 2019 Contrib. Plasma Phys. 60 e201900094 doi: 10.1002/ctpp.201900094
|
[75] |
Sun S R et al 2020 Plasma Chem. Plasma Process. 40 261 doi: 10.1007/s11090-019-10027-4
|
[76] |
Sun J H et al 2020 Plasma Chem. Plasma Process. 40 1383 doi: 10.1007/s11090-020-10108-9
|
[77] |
Minotti F et al 2015 Phys. Plasmas 22 113512 doi: 10.1063/1.4936277
|
[78] |
Menart J and Lin L C 1998 J. Thermophys. Heat Transfer 12 500 doi: 10.2514/2.6396
|
[79] |
Devoto R S 1973 Phys. Fluids 16 616 doi: 10.1063/1.1694396
|
[80] |
Kortshagen U and Schluter H 1992 J. Phys. D: Appl. Phys. 25 644 doi: 10.1088/0022-3727/25/4/010
|
[81] |
Meichsner J et al 2013 Nonthermal Plasma Chemistry and Physics (Boca Raton: CRC Press) p. 44
|
[82] |
Chen X and Han P 1999 J. Phys. D: Appl. Phys. 32 1711 doi: 10.1088/0022-3727/32/14/324
|
[83] |
Hoffert M I and Lien H 1967 Phys. Fluids 10 1769 doi: 10.1063/1.1762356
|
[84] |
Chen J et al 2020 Phys. Plasmas 27 083511 doi: 10.1063/5.0011044
|
[85] |
Raizer Y P 1991 Gas Discharge Physics (Berlin, Heidelberg: Springer
|
[86] |
Zhou W et al 2016 Plasma Sources Sci. Technol. 25 05LT01 doi: 10.1088/0963-0252/25/5/05LT01
|
[87] |
Michaelson H B 1977 J. Appl. Phys. 48 4729 doi: 10.1063/1.323539
|
[88] |
Benilov M S and Marotta A 1995 J. Phys. D: Appl. Phys. 28 1869 doi: 10.1088/0022-3727/28/9/015
|
[89] |
Zhang X N et al 2013 Phys. Plasmas 20 033508 doi: 10.1063/1.4794969
|
[90] |
Raud J, Laan M and Jõgi I 2011 J. Phys. D: Appl. Phys. 44 345201 doi: 10.1088/0022-3727/44/34/345201
|
[91] |
Guo H et al 2016 Rev. Sci. Instrum. 87 033502 doi: 10.1063/1.4942965
|
[92] |
Wong C S and Mongkolnavin R 2016 Elements of Plasma Technology (Singapore: Springer
|
[93] |
Jonkers J and Van Der Mullen J A M 1999 J. Quant. Spectrosc. Radiat. Transfer 61 703 doi: 10.1016/S0022-4073(98)00059-4
|
[94] |
Gigosos M A, González M Á and Cardeñoso V 2003 Spectrochim. Acta B: At. Spectrosc. 58 1489 doi: 10.1016/S0584-8547(03)00097-1
|
[95] |
Nedić N V et al 2022 J. Anal. At. Spectrom. 37 1318 doi: 10.1039/D2JA00109H
|
[96] |
Wang Z B et al 2012 Plasma Chem. Plasma Process. 32 859 doi: 10.1007/s11090-012-9367-y
|
[97] |
Nishiyama H et al 2009 Int. J. Heat Mass Transfer 52 1778 doi: 10.1016/j.ijheatmasstransfer.2008.10.009
|
[98] |
Li H P and Benilov M S 2007 J. Phys. D: Appl. Phys. 40 2010 doi: 10.1088/0022-3727/40/7/024
|
[99] |
Li J et al 2022 Plasma Sources Sci. Technol. 31 055015 doi: 10.1088/1361-6595/ac6d0c
|
[100] |
Fang C et al 2023 J. Phys. D: Appl. Phys. 56 11LT01 doi: 10.1088/1361-6463/acbc88
|
[101] |
Guo H et al 2018 Sci. Rep. 8 4783 doi: 10.1038/s41598-018-22911-8
|
[102] |
Li H P, Pfender E and Chen X 2003 J. Phys. D: Appl. Phys. 36 1084 doi: 10.1088/0022-3727/36/9/306
|
[103] |
Michael A, Lieberman and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing (New York: Wiley & Sons, Inc.) p. 176
|
[1] | Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e |
[2] | Xuechen LI (李雪辰), Biao WANG (王彪), Pengying JIA (贾鹏英), Linwei YANG (杨林伟), Yaru LI (李亚茹), Jingdi CHU (楚婧娣). Three modes of a direct-current plasma jet operated underwater to degrade methylene blue[J]. Plasma Science and Technology, 2017, 19(11): 115505. DOI: 10.1088/2058-6272/aa86a6 |
[3] | PAN Jie (潘杰), LI Li (李莉), WANG Yunuan (王玉暖), XIU Xianwu (修显武), WANG Chao (王超), SONG Yuzhi (宋玉志). Particle Densities of the Atmospheric-Pressure Argon Plasmas Generated by the Pulsed Dielectric Barrier Discharges[J]. Plasma Science and Technology, 2016, 18(11): 1081-1088. DOI: 10.1088/1009-0630/18/11/05 |
[4] | ZHANG Jie (张杰), GUO Ying (郭颖), HUANG Xiaojiang (黄晓江), ZHANG Jing (张菁), SHI Jianjun (石建军). Operation Mode on Pulse Modulation in Atmospheric Radio Frequency Glow Discharges[J]. Plasma Science and Technology, 2016, 18(10): 974-977. DOI: 10.1088/1009-0630/18/10/02 |
[5] | WU Guojiang(吴国将), ZHANG Xiaodong(张晓东). Analysis of the Variability of the L-H Transition Power Threshold in a Helium-4 Discharge[J]. Plasma Science and Technology, 2014, 16(6): 557-561. DOI: 10.1088/1009-0630/16/6/03 |
[6] | HUANG Haihong(黄海宏), YAN Teng(晏腾), WANG Haixin(王海欣). Application of a Current and Voltage Mixed Control Mode for the New Fast Control Power Supply at EAST[J]. Plasma Science and Technology, 2014, 16(4): 420-423. DOI: 10.1088/1009-0630/16/4/22 |
[7] | ZHANG Chongyang (张重阳), LIU Ahdi (刘阿娣), LI Hong (李弘), LI Bin (李斌), et al.. X-Mode Frequency Modulated Density Profile Reflectometer on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(9): 857-862. DOI: 10.1088/1009-0630/15/9/04 |
[8] | LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03 |
[9] | HE Wei (何为), LIU Xinghua (刘兴华), XIAN Richang (咸日常), CHEN Suhong (陈素红), LIAO Ruijin (廖瑞金), YANG Fan (杨帆), XIAO Hanguang (肖汉光). Kinetics Characteristics and Bremsstrahlung of Argon DC Discharge Under Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(4): 335-342. DOI: 10.1088/1009-0630/15/4/06 |
[10] | HE Feng (何锋), HE Shoujie (何寿杰), ZHAO Xiaofei (赵晓菲), GUO Bingang (郭滨刚), OUYANG Jiting (欧阳吉庭). Study of the Discharge Mode in Micro-Hollow Cathode[J]. Plasma Science and Technology, 2012, 14(12): 1079-1083. DOI: 10.1088/1009-0630/14/12/08 |
1. | Qi, J., Zhang, Z., Zhang, Z. et al. Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle. Plasma Sources Science and Technology, 2024, 33(7): 075015. DOI:10.1088/1361-6595/ad647c | |
2. | ZHANG, Z., ZHAO, Z., LIU, X. et al. Full lifetime demonstration of a Micro-Cathode-Arc thruster evolution characteristics. Chinese Journal of Aeronautics, 2024, 37(6): 38-49. DOI:10.1016/j.cja.2024.03.043 | |
3. | Xu, Z., Xiong, K., Huang, X. Temperature Field Simulation and Intelligent Control Algorithm in the Process of Flameless Welding of Transmission Line Grounding Device. 2024. DOI:10.1109/AIARS63200.2024.00135 | |
4. | Liu, X.-Y., Zhao, Z.-J., Zhang, Z. et al. Experimental Study on Conductive Film State of Micro-Cathode Arc Thruster | [微阴极电弧推力器导电薄膜状态实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210060. DOI:10.13675/j.cnki.tjjs.2210060 | |
5. | Liu, Y.-X., Geng, J.-Y., Zhang, X. et al. Experimental Study on Discharge Characteristics of Plate Electrode in Micro-Cathode Arc Thruster | [微阴极电弧推力器平板电极放电特性实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2211074. DOI:10.13675/j.cnki.tjjs.2211074 | |
6. | Tang, H.-B., Chen, Z.-Y., Wang, Y.-B. et al. Research Review for Magnetic Nozzle of Electric Propulsion | [电推进磁喷管研究综述]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(7): 2210071. DOI:10.13675/j.cnki.tjjs.2210071 | |
7. | Ji, T., Wei, L., Wang, L. et al. Investigation of the physical process inside the crater during the ablation of the cathode material of a micro-cathode arc thruster. Journal of Physics D: Applied Physics, 2023, 56(24): 245201. DOI:10.1088/1361-6463/acc8e3 | |
8. | Yan, H., Geng, J.-Y., Chen, M.-Y. et al. Performance Investigation of High-Total-Impulse Micro-Cathode Arc Thruster | [高总冲微阴极电弧推力器实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2208104. DOI:10.13675/j.cnki.tjjs.2208104 | |
9. | Yang, Z., Guo, H., Bai, J. et al. Experimental study of a neutralizer-free gridded ion thruster using radio-frequency self-bias effect. Plasma Science and Technology, 2023, 25(4): 045506. DOI:10.1088/2058-6272/aca13f | |
10. | Gao, Y., Wang, W., Li, Y. et al. The effect of anode axial position on the performance of a miniaturized cylindrical Hall thruster with a cusp-type magnetic field. Plasma Science and Technology, 2022, 24(7): 074002. DOI:10.1088/2058-6272/ac4d1c | |
11. | Huang, W.-D., Geng, J.-Y., Yan, H. et al. Particle-in-cell simulation of vacuum arc breakdown process of tip-to-plate electrode configuration. Journal of Applied Physics, 2022, 131(10): 103303. DOI:10.1063/5.0079589 | |
12. | Hu, Y., Huang, Z., Cao, Y. et al. Kinetic insights into thrust generation and electron transport in a magnetic nozzle. Plasma Sources Science and Technology, 2021, 30(7): 075006. DOI:10.1088/1361-6595/ac0a48 | |
13. | Wang, Z.-X., Cao, Z.-Y., Li, R. et al. Three-dimensional hybrid simulation of single cathode spot vacuum arc plasma jet under axial magnetic field | [纵磁作用下真空电弧单阴极斑点等离子体射流三维混合模拟]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(5): 055201. DOI:10.7498/aps.70.20201701 | |
14. | ZHANG, W., LIU, W., TIAN, J. et al. Study of the influence of discharge loop parameters on anode side on generation characteristics of metal plasma jet in a pulsed vacuum discharge. Plasma Science and Technology, 2021, 23(6): 064004. DOI:10.1088/2058-6272/abeb5c |