Processing math: 100%
Advanced Search+
Xianshu WU, Jingchun LI, Jiaqi DONG, Yuejiang SHI, Guoqing LIU, Yong LIU, Zhiqiang LONG, Buqing ZHANG, Baoshan YUAN, Y. K. Martin PENG, Minsheng LIU. Modeling of ion cyclotron resonance frequency heating of proton-boron plasmas in EHL-2 spherical tokamak[J]. Plasma Science and Technology, 2024, 26(10): 104004. DOI: 10.1088/2058-6272/ad68ae
Citation: Xianshu WU, Jingchun LI, Jiaqi DONG, Yuejiang SHI, Guoqing LIU, Yong LIU, Zhiqiang LONG, Buqing ZHANG, Baoshan YUAN, Y. K. Martin PENG, Minsheng LIU. Modeling of ion cyclotron resonance frequency heating of proton-boron plasmas in EHL-2 spherical tokamak[J]. Plasma Science and Technology, 2024, 26(10): 104004. DOI: 10.1088/2058-6272/ad68ae

Modeling of ion cyclotron resonance frequency heating of proton-boron plasmas in EHL-2 spherical tokamak

More Information
  • Ion cyclotron resonance heating (ICRH) stands out as a widely utilized and cost-effective auxiliary method for plasma heating, bearing significant importance in achieving high-performance discharges in p-11B plasmas. In light of the specific context of p-11B plasma in the EHL-2 device, we conducted a comprehensive scan of the fundamental physical parameters of the antenna using the full-wave simulation program TORIC. Our preliminary result indicated that for p-11B plasma, optimal ion heating parameters include a frequency of 40 MHz, with a high toroidal mode number like Nϕ=28 to heat the majority H ions. In addition, we discussed the impact of concentration of minority ion species on ion cyclotron resonance heating when 11B serves as the heavy minority species. The significant difference in charge-to-mass ratio between boron and hydrogen ions results in a considerable distance between the hybrid resonance layer and the tow inverted cyclotron resonance layer, necessitating a quite low boron ion concentration to achieve effective minority heating. We also considered another method of direct heating of hydrogen ions in the presence of boron ion minority. It is found that at appropriate boron ion concentrations (X(11B)17%), the position of the hybrid resonance layer approaches that of the hydrogen ion cyclotron resonance layer, thereby altering the polarization at this position and significantly enhancing hydrogen ion fundamental absorption.

  • This work was supported by Shenzhen Municipal Collaborative Innovation Technology Program - International Science and Technology (S&T) Cooperation Project (No. GJHZ20220913142609017), Shenzhen Science and Technology Innovation Commission Key Technical Project (No. JSGG20210713091539014), LingChuang Research Project of China National Nuclear Corporation and the “Fourteen Five-Year Plan” Basic Technological Research Project (No. JSZL2022XXXX001). The authors would like to thank H Xie, H Zhao, H Ma, D Yang and ENN team for helpful discussions.

  • [1]
    Wesson J and Campbell D J 2004 Tokamaks 3rd ed (Oxford: Oxford University Press
    [2]
    Peng Y K M 2000 Phys. Plasmas 7 1681 doi: 10.1063/1.874048
    [3]
    Ono M and Kaita R 2015 Phys. Plasmas 22 040501 doi: 10.1063/1.4915073
    [4]
    Kaye S M, Connor J W and Roach C M 2021 Plasma Phys. Control. Fusion 63 123001 doi: 10.1088/1361-6587/ac2b38
    [5]
    Fisch N J 1987 Rev. Mod. Phys. 59 175 doi: 10.1103/RevModPhys.59.175
    [6]
    Pinsker R I 2015 Phys. Plasmas 22 090901 doi: 10.1063/1.4930135
    [7]
    Chiu S C et al 1989 Nucl. Fusion 29 2175 doi: 10.1088/0029-5515/29/12/010
    [8]
    Li J C et al 2015 Phys. Plasmas 22 102510 doi: 10.1063/1.4933355
    [9]
    Li J C et al 2016 Phys. Plasmas 23 122504 doi: 10.1063/1.4971442
    [10]
    Noterdaeme J M 2020 AIP Conf. Proc. 2254 020001 doi: 10.1063/5.0014254
    [11]
    Ding B J et al 2013 Nucl. Fusion 53 113027 doi: 10.1088/0029-5515/53/11/113027
    [12]
    Brambilla M and Bilato R 2015 Nucl. Fusion 55 023016 doi: 10.1088/0029-5515/55/2/023016
    [13]
    Magee R M et al 2023 Nat. Commun. 14 955 doi: 10.1038/s41467-023-36655-1
    [14]
    Liu M S et al 2024 Phys. Plasmas 31 062507 doi: 10.1063/5.0199112
    [15]
    Colas L et al 2022 Nucl. Fusion 62 016014 doi: 10.1088/1741-4326/ac35f9
    [16]
    Kazakov Y O et al 2021 Phys. Plasmas 28 020501 doi: 10.1063/5.0021818
    [17]
    Gallart D et al 2022 Plasma Phys. Control. Fusion 64 125006 doi: 10.1088/1361-6587/ac9925
    [18]
    Brambilla M and Bilato R 2006 Nucl. Fusion 46 S387 doi: 10.1088/0029-5515/46/7/S01
    [19]
    Brambilla M 1999 Plasma Phys. Control. Fusion 41 1 doi: 10.1088/0741-3335/41/1/002
    [20]
    Batchelor D B et al 1992 Fusion Technol. 21 1214 doi: 10.13182/FST92-A29896
    [21]
    Kazakov Y O, Fülöp T and Van Eester D 2013 Nucl. Fusion 53 053014 doi: 10.1088/0029-5515/53/5/053014
    [22]
    Mayoral M L et al 2006 Nucl. Fusion 46 S550 doi: 10.1088/0029-5515/46/7/S14
    [23]
    Freidberg J P 2007 Plasma Physics and Fusion Energy (Cambridge: Cambridge University Press
    [24]
    Lu L F et al 2023 Nucl. Fusion 63 066023 doi: 10.1088/1741-4326/acc4dc
    [25]
    Faustin J M et al 2017 Plasma Phys. Control. Fusion 59 084001 doi: 10.1088/1361-6587/aa72a4
    [26]
    Vdovin V, Watari T and Fukuyama A 1997 An option of ICRF ion heating scenario in large helical device, Japan, NIFS-502 (https://irdb.nii.ac.jp/01130/0001063172
    [27]
    Bobkov V and Noterdaeme J M 2009 Radio frequency power in plasmas In: Proceedings of the 18th Topical Conference Melville: American Institute of Physics 2009: 57
    [28]
    Yin L et al 2020 Phys. Plasmas 27 082506 doi: 10.1063/5.0015226
    [29]
    Song C Y et al 2021 Phys. Scr. 96 025603 doi: 10.1088/1402-4896/abd2e2
  • Related Articles

    [1]Boqiong JIANG (江博琼), Xiaodan FEI (费小丹), Shuiliang YAO (姚水良), Qinmin WANG (王钦民), Xinlei YAO (姚馨蕾), Kai XU (徐锴), Zhizong CHEN (陈挚宗). Decomposition of a gas mixture of four n-alkanes using a DBD reactor[J]. Plasma Science and Technology, 2020, 22(11): 115501. DOI: 10.1088/2058-6272/aba2c3
    [2]Shida XU (胥世达), Di JIN (金迪), Feilong SONG (宋飞龙), Yun WU (吴云). Experimental investigation on n-decane plasma cracking in an atmospheric-pressure argon environment[J]. Plasma Science and Technology, 2019, 21(8): 85503-085503. DOI: 10.1088/2058-6272/ab104e
    [3]J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba
    [4]Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6
    [5]Tao YANG (杨涛), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Jiao LI (李娇), Pan CHEN (陈攀), Yongxiang YIN (印永祥). Understanding CO2 decomposition by thermal plasma with supersonic expansion quench[J]. Plasma Science and Technology, 2018, 20(6): 65502-065502. DOI: 10.1088/2058-6272/aaa969
    [6]Yanqin LI (李艳琴), Xiuling ZHANG (张秀玲), Lanbo DI (底兰波). Study on the properties of a ε-Fe3N-based magnetic lubricant prepared by DBD plasma[J]. Plasma Science and Technology, 2018, 20(1): 14012-014012. DOI: 10.1088/2058-6272/aa8c6d
    [7]Zehua XIAO (肖泽铧), Di XU (徐迪), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 64009-064009. DOI: 10.1088/2058-6272/aa632c
    [8]MA Tianpeng (马天鹏), ZHAO Qiong (赵琼), LIU Jianqi (刘建奇), ZHONG Fangchuan (钟方川). Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor[J]. Plasma Science and Technology, 2016, 18(6): 686-692. DOI: 10.1088/1009-0630/18/6/17
    [9]Jee-Hun KO, Sooseok CHOI, Hyun-Woo PARK, Dong-Wha PARK. Decomposition of Nitrogen Trifluoride Using Low Power Arc Plasma[J]. Plasma Science and Technology, 2013, 15(9): 923-927. DOI: 10.1088/1009-0630/15/9/17
    [10]Takayuki WATANABE, NARENGERILE. Decomposition of Glycerine by Water Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(4): 357-361. DOI: 10.1088/1009-0630/15/4/09

Catalog

    Figures(12)

    Article views (41) PDF downloads (18) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return