Citation: | Fufeng WANG, Tianhang MENG, Zhongxi NING, Ximing ZHU. Influence of cyclic ignition and steady-state operation on a 1–2 A barium tungsten hollow cathode[J]. Plasma Science and Technology, 2024, 26(12): 125503. DOI: 10.1088/2058-6272/ad7a57 |
Booming low-power electric propulsion systems require 1–2 A hollow cathodes. Such cathodes are expected to go through more frequent ignitions in the low orbit, but the impact of cyclic ignitions on such 1–2 A barium tungsten hollow cathodes with a heater was not clear. In this study, a 12,638-cyclic ignition test and a 6,000-hour-long life test on two identical cathodes were carried out. The discharge voltage of the cathode and the erosion of the orifice after cyclic ignition were all larger than that of the cathode after stable operation. This indicated that the impact of cycle ignition on the discharge performance of a low current BaO-W cathode with a heater was higher than that of stable operation. The results of the ion energy distribution function measured during the ignition period indicated that the main reason for the orifice expansion was ion bombardment. Therefore, it was necessary to pay attention to the number of ignitions for the lifetime of this kind of cathode.
This work was supported by the Key Projects of School-enterprise Joint Fund (No. U22B20120) and the National Science Fund for Distinguished Young Scholars (No. 52107141).
[1] |
Serjeant S, Elvis M and tinetti G 2020 Nat. Astron. 4 1031 doi: 10.1038/s41550-020-1201-5
|
[2] |
Watanabe H, Cho S and Kubota K 2020 Acta Astronaut. 166 227 doi: 10.1016/j.actaastro.2019.07.042
|
[3] |
Venkatesan A et al 2020 Nat. Astron. 4 1043 doi: 10.1038/s41550-020-01238-3
|
[4] |
McDowell J C 2020 Astrophys. J. Lett. 892 L36 doi: 10.3847/2041-8213/ab8016
|
[5] |
Conversano R W et al 2017 J. Propul. Power 33 975 doi: 10.2514/1.B36230
|
[6] |
Ning Z X et al 2019 Plasma Sci. Technol. 21 125402 doi: 10.1088/2058-6272/ab4364
|
[7] |
Meng T H, Ning Z X and Yu D R 2020 Plasma Sci. Technol. 22 094001 doi: 10.1088/2058-6272/ab7902
|
[8] |
Iqbal M et al 2004 Vacuum 77 19 doi: 10.1016/j.vacuum.2004.07.066
|
[9] |
Xu J P et al 2016 Vacuum 134 83 doi: 10.1016/j.vacuum.2016.09.025
|
[10] |
Garulli A et al 2011 J. Guid. Control Dynam. 34 1683 doi: 10.2514/1.52985
|
[11] |
Olivieri L and Francesconi A et al 2020 Adv. Space Res. 65 351 doi: 10.1016/j.asr.2019.09.048
|
[12] |
Gushenets V I et al 1999 IEEE Trans. Plasma. Sci. 27 1055 doi: 10.1109/27.782281
|
[13] |
Domonkos M T, Gallimore A D and Patterson M J 1997 An evaluation of hollow cathode scaling to very low power and flow rate Proc. of the 25th Int. Electric Propulsion Conf. Cleveland: IEPC 1997
|
[14] |
Wirz R et al 2006 Discharge hollow cathode and extraction grid analysis for the MiXI ion thruster Proc. of the 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit Sacramento: AIAA 2006: 2006-4498
|
[15] |
Samples S A and Wirz R E 2020 Plasma Res. Express 2 025008 doi: 10.1088/2516-1067/ab906d
|
[16] |
Li F et al 2023 Vacuum 207 111492 doi: 10.1016/j.vacuum.2022.111492
|
[17] |
Goebel D M et al 2005 J. Appl. Phys. 98 113302 doi: 10.1063/1.2135417
|
[18] |
King S et al 2012 Small satellite LEO maneuvers with low-power electric propulsion Proc. of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit Hartford: AIAA 2012: 2008-4516
|
[19] |
Leomanni M et al 2017 Acta Astronaut. 133 444 doi: 10.1016/j.actaastro.2016.11.001
|
[20] |
Pedrini D et al 2020 Aerospace 7 96 doi: 10.3390/aerospace7070096
|
[21] |
Lev D et al 2019 Rev. Sci. Instrum. 90 113303 doi: 10.1063/1.5097599
|
[22] |
Warner D J, Branam R D and Hargus W A 2010 J. Propul. Power 26 130 doi: 10.2514/1.41386
|
[23] |
Conversano R W et al 2022 Acta Astronaut. 197 53 doi: 10.1016/j.actaastro.2022.05.015
|
[24] |
Becatti G, Conversano R W and Goebel D M 2021 Acta Astronaut. 178 181 doi: 10.1016/j.actaastro.2020.09.013
|
[25] |
Pedrini D et al 2018 IEEE Trans. Plasma Sci. 46 296 doi: 10.1109/TPS.2017.2778317
|
[26] |
Vekselman V et al 2013 J. Propul. Power 29 475 doi: 10.2514/1.B34628
|
[27] |
Rubin B and Williams J D 2008 J. Appl. Phys. 104 053302 doi: 10.1063/1.2973690
|
[28] |
Tighe W et al 2005 Performance evaluation and life test of the XIPS hollow cathode heater Proc. of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit Tucson: AIAA 2005: 2005-4066
|
[29] |
Ning Z X et al 2018 Vacuum 155 470 doi: 10.1016/j.vacuum.2018.06.054
|
[30] |
Gallimore A D, Rovey J L and Herman D A 2007 J. Propul. Power 23 1271 doi: 10.2514/1.27897
|
[31] |
Polk J et al 2008 Ongoing wear test of a XIPS 25-cm thruster discharge cathode Proc. of the 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit Hartford: AIAA 2008: 2008-4913
|
[32] |
William G T and Chien K R 2005 Hollow cathode ignition and life model Proc. of the 41th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit Tucson: AIAA 2005: 2005-3666
|
[33] |
Katz I et al 2008 IEEE Trans. Plasma. Sci. 36 2199 doi: 10.1109/TPS.2008.2004363
|
[34] |
Goebel D M et al 2023 Fundamentals of Electric Propulsion 2nd ed (New York: Wiley
|
[35] |
Wang F et al 2022 J. Phys. D: Appl. Phys. 55 455202 doi: 10.1088/1361-6463/ac90ce
|
[1] | Zebin WANG, Junbiao LIU, Aiguo CHEN, Dazheng WANG, Pengfei WANG, Li HAN. Optimization of electron beams for ion bombardment secondary emission electron gun[J]. Plasma Science and Technology, 2025, 27(3): 035501. DOI: 10.1088/2058-6272/ad9819 |
[2] | Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295 |
[3] | Mingming SUN (孙明明), Tianping ZHANG (张天平), Xiaodong WEN (温晓东), Weilong GUO (郭伟龙), Jiayao SONG (宋嘉尧). Plasma characteristics in the discharge region of a 20A emission current hollow cathode[J]. Plasma Science and Technology, 2018, 20(2): 25503-025503. DOI: 10.1088/2058-6272/aa8edb |
[4] | Zun ZHANG (张尊), Kan XIE (谢侃), Jiting OUYANG (欧阳吉庭), Ning GUO (郭宁), Yu QIN (秦宇), Qimeng XIA (夏启蒙), Song BAI (白松), Xianming WU (吴先明), Zengjie GU (谷增杰). Steady and oscillatory plasma properties in the near-field plume of a hollow cathode[J]. Plasma Science and Technology, 2018, 20(2): 24010-024010. DOI: 10.1088/2058-6272/aa9d7d |
[5] | Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0 |
[6] | JIANG Kai (蒋锴), WANG Xianrong (王先荣), QIN Xiaogang (秦晓刚), YANG Shengsheng (杨生胜), YANG Wei (杨威), ZHAO Chengxuan (赵, 呈()选 ), CHEN Yifeng (陈益峰), SHI Liang (史亮), TANG Daotan (汤道坦), XIE Kan (谢侃). Surface Charging Controlling of the Chinese Space Station with Hollow Cathode Plasma Contactor[J]. Plasma Science and Technology, 2016, 18(7): 727-731. DOI: 10.1088/1009-0630/18/7/05 |
[7] | CHEN Yuqian (陈俞钱), HU Chundong (胡纯栋), XIE Yahong (谢亚红). Analysis of Effects of the Arc Voltage on Arc Discharges in a Cathode Ion Source of Neutral Beam Injector[J]. Plasma Science and Technology, 2016, 18(4): 453-456. DOI: 10.1088/1009-0630/18/4/21 |
[8] | SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06 |
[9] | ZHANG Saiqian(张赛谦), DAI Zhongling(戴忠玲), WANG Younian(王友年). Ion Transport to a Photoresist Trench in a Radio Frequency Sheath[J]. Plasma Science and Technology, 2012, 14(11): 958-964. DOI: 10.1088/1009-0630/14/11/03 |
[10] | HU Chundong(胡纯栋), XIE Yahong(谢亚红), NBI team. The Development of a Megawatt-Level High Current Ion Source[J]. Plasma Science and Technology, 2012, 14(1): 75-77. DOI: 10.1088/1009-0630/14/1/16 |
1. | Liu, Y., Zang, X., Zhao, S. et al. Degradation of toluene by DBD plasma catalytic technology with CoMn-BTC/ Ti3C2Tx composites. Applied Catalysis A: General, 2025. DOI:10.1016/j.apcata.2025.120180 |
2. | Cui, W., Chen, S., Duan, J. et al. Surface functional group regulation of Ti3C2Tx based on atmospheric pressure cold plasma. Contributions to Plasma Physics, 2024, 64(9): e202300103. DOI:10.1002/ctpp.202300103 |
3. | Yang, H., Chen, M.M., Zhang, H.T. et al. Examining homogeneity of dielectric barrier discharge using dispersion normalization and local temperature difference methods. Frontiers in Physics, 2023. DOI:10.3389/fphy.2023.1189371 |
4. | Wang, M., Li, P., Han, R. et al. Study on the Flow Field Characteristics of Pulse Dielectric Barrier Discharge Jet. 2023. DOI:10.1109/CIEEC58067.2023.10166270 |
5. | Zhang, Y., Zhu, Y., Tao, S. et al. Plasma-coupled catalysis in VOCs removal and CO2 conversion: Efficiency enhancement and synergistic mechanism. Catalysis Communications, 2022. DOI:10.1016/j.catcom.2022.106535 |