Citation: | Tiantian SUN, Xinchen JIANG, Zhi LI, Xiang GU, Xueyun WANG, Lili DONG, Danke YANG, Pengmin LI, Hanqing WANG, Shuo LIU, Yingying LI, Huasheng XIE, Yuejiang SHI, Yunfeng LIANG, Minsheng LIU, the EHL-2 Team. Characterization of fast ion loss in the EHL-2 spherical torus[J]. Plasma Science and Technology, 2025, 27(2): 024002. DOI: 10.1088/2058-6272/ad8dfb |
This study analyzes fast ion losses in the EHL-2 fusion device, focusing on both beam ions and alpha particles as p-11B fusion reaction products. Using the Monte Carlo orbit-following code TGCO, we evaluate particle confinement under various operational scenarios, including co-injected tangential neutral beam injection at beam energies of 60 keV, 80 keV, and 200 keV. Our simulations estimate the heat load driven by lost beam ions and find it to be within acceptable material limits for a plasma current on the order of mega-amperes. Additionally, we simulate the distribution of fusion products and observe a higher particle loss fraction for alpha particles compared to beam ions. However, due to the relatively low fusion power, these lost alpha particles are unlikely to significantly impact the plasma-facing materials. To assess the impact of the magnetic ripple, we compute the ripple field distribution by modelling the toroidal field (TF) coils as current filaments. The results indicate that the ripple field effect on particle confinement is minimal, primarily due to the large distance of over 1 m between the TF coils and the plasma on the low-field side. The analysis based on the test particle model is a foundational step in ensuring the basic safety aspects of the new device, which is essential for developing a robust design, optimizing performance, and maintaining safe operation.
This work was supported by ENN Group and ENN Energy Research Institute. The authors would like to express their gratitude for the contributions of the ENN fusion team and collaborators in supporting this endeavour. We are thankful to Dr. Wei Chen, Dr. Zhengxiong Wang, Dr. Feng Wang, and Dr. Baolong Hao for their valuable discussions on this topic. Special thanks are extended to Dr. Youjun Hu for developing the open-sourced code TGCO and granting permission for its use in this research. The authors also acknowledge the support of Beijing PARATERA Tech Corp., Ltd. for providing HPC resources that have contributed to the research results reported in this paper.
[1] |
Liu M S et al 2024 Phys. Plasmas 31 062507 doi: 10.1063/5.0199112
|
[2] |
Liang Y F et al 2024 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ad981a
|
[3] |
Wang X Y et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/ada9c3
|
[4] |
Jiang X C et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adae71
|
[5] |
Fasoli A et al 2007 Nucl. Fusion 47 S264 doi: 10.1088/0029-5515/47/6/S05
|
[6] |
Heidbrink W W and White R B 2020 Phys. Plasmas 27 030901 doi: 10.1063/1.5136237
|
[7] |
Tobita K et al 1994 Nucl. Fusion 34 1097 doi: 10.1088/0029-5515/34/8/I04
|
[8] |
Xu Y F et al 2021 Plasma Sci. Technol. 23 095102 doi: 10.1088/2058-6272/ac0717
|
[9] |
Fredrickson E D et al 2006 Nucl. Fusion 46 S926 doi: 10.1088/0029-5515/46/10/S09
|
[10] |
McClements K G and Fredrickson E D 2017 Plasma Phys. Control. Fusion 59 053001 doi: 10.1088/1361-6587/aa626e
|
[11] |
Heidbrink W W et al 2008 Phys. Plasmas 15 055501 doi: 10.1063/1.2838239
|
[12] |
Zheng Z et al 2018 Plasma Sci. Technol. 20 065103 doi: 10.1088/2058-6272/aab262
|
[13] |
Jiang Y et al 2021 Nucl. Fusion 61 116033 doi: 10.1088/1741-4326/ac26a4
|
[14] |
Sharapov S E et al 2005 Nucl. Fusion 45 1168 doi: 10.1088/0029-5515/45/9/017
|
[15] |
Fitzgerald M et al 2018 Nucl. Fusion 59 016004 doi: 10.1088/1741-4326/aaea1e
|
[16] |
Hu Y J et al 2021 Phys. Plasmas 28 122502 doi: 10.1063/5.0069792
|
[17] |
Hu Y J et al 2023 Phys. Plasmas 30 092507 doi: 10.1063/5.0158503
|
[18] |
Pankin A et al 2004 Comput. Phys. Commun. 159 157 doi: 10.1016/j.cpc.2003.11.002
|
[19] |
Gu X et al 2025 Plasma Sci. Technol. in press (https://doi.org/10.1088/2058-6272/adae72
|
[20] |
Pitts A R et al 2019 Nucl. Mater. Energ. 20 100696 doi: 10.1016/j.nme.2019.100696
|
[21] |
Li Y L et al 2023 Phys. Plasmas 30 092503 doi: 10.1063/5.0156815
|
[22] |
Becker H W, Rolfs C and Trautvetter H P 1987 Z. Phys. A: At. Nucl. 327 341 doi: 10.1007/BF01284459
|
[23] |
Li Z et al 2024 Laser Part. Beams 42 e5 doi: 10.1017/lpb.2024.2
|
[1] | Boqiong JIANG (江博琼), Xiaodan FEI (费小丹), Shuiliang YAO (姚水良), Qinmin WANG (王钦民), Xinlei YAO (姚馨蕾), Kai XU (徐锴), Zhizong CHEN (陈挚宗). Decomposition of a gas mixture of four n-alkanes using a DBD reactor[J]. Plasma Science and Technology, 2020, 22(11): 115501. DOI: 10.1088/2058-6272/aba2c3 |
[2] | Shida XU (胥世达), Di JIN (金迪), Feilong SONG (宋飞龙), Yun WU (吴云). Experimental investigation on n-decane plasma cracking in an atmospheric-pressure argon environment[J]. Plasma Science and Technology, 2019, 21(8): 85503-085503. DOI: 10.1088/2058-6272/ab104e |
[3] | J KO, T H KIM, S CHOI. Numerical analysis of thermal plasma scrubber for CF4 decomposition[J]. Plasma Science and Technology, 2019, 21(6): 64002-064002. DOI: 10.1088/2058-6272/aafbba |
[4] | Shoufeng TANG (唐首锋), Xue LI (李雪), Chen ZHANG (张晨), Yang LIU (刘洋), Weitao ZHANG (张维涛), Deling YUAN (袁德玲). Strengthening decomposition of oxytetracycline in DBD plasma coupling with Fe-Mn oxide-loaded granular activated carbon[J]. Plasma Science and Technology, 2019, 21(2): 25504-025504. DOI: 10.1088/2058-6272/aaeba6 |
[5] | Tao YANG (杨涛), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Jiao LI (李娇), Pan CHEN (陈攀), Yongxiang YIN (印永祥). Understanding CO2 decomposition by thermal plasma with supersonic expansion quench[J]. Plasma Science and Technology, 2018, 20(6): 65502-065502. DOI: 10.1088/2058-6272/aaa969 |
[6] | Yanqin LI (李艳琴), Xiuling ZHANG (张秀玲), Lanbo DI (底兰波). Study on the properties of a ε-Fe3N-based magnetic lubricant prepared by DBD plasma[J]. Plasma Science and Technology, 2018, 20(1): 14012-014012. DOI: 10.1088/2058-6272/aa8c6d |
[7] | Zehua XIAO (肖泽铧), Di XU (徐迪), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). High concentration xylene decomposition and diagnostic analysis by non-thermal plasma in a DBD reactor[J]. Plasma Science and Technology, 2017, 19(6): 64009-064009. DOI: 10.1088/2058-6272/aa632c |
[8] | MA Tianpeng (马天鹏), ZHAO Qiong (赵琼), LIU Jianqi (刘建奇), ZHONG Fangchuan (钟方川). Study of Humidity Effect on Benzene Decomposition by the Dielectric Barrier Discharge Nonthermal Plasma Reactor[J]. Plasma Science and Technology, 2016, 18(6): 686-692. DOI: 10.1088/1009-0630/18/6/17 |
[9] | Jee-Hun KO, Sooseok CHOI, Hyun-Woo PARK, Dong-Wha PARK. Decomposition of Nitrogen Trifluoride Using Low Power Arc Plasma[J]. Plasma Science and Technology, 2013, 15(9): 923-927. DOI: 10.1088/1009-0630/15/9/17 |
[10] | Takayuki WATANABE, NARENGERILE. Decomposition of Glycerine by Water Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(4): 357-361. DOI: 10.1088/1009-0630/15/4/09 |