Advanced Search+
AN Jiutao(安久涛), SHANG Kefeng(商克峰), LU Na(鲁娜), HONG Yi(洪义), JIANG Yuze(姜雨泽), LI Jie(李杰), WU Yan(吴彦). Performance of Dielectric Barrier Discharge Reactors on Elemental Mercury Oxidation in the Coal-Fired Flue Gas[J]. Plasma Science and Technology, 2014, 16(2): 155-160. DOI: 10.1088/1009-0630/16/2/12
Citation: AN Jiutao(安久涛), SHANG Kefeng(商克峰), LU Na(鲁娜), HONG Yi(洪义), JIANG Yuze(姜雨泽), LI Jie(李杰), WU Yan(吴彦). Performance of Dielectric Barrier Discharge Reactors on Elemental Mercury Oxidation in the Coal-Fired Flue Gas[J]. Plasma Science and Technology, 2014, 16(2): 155-160. DOI: 10.1088/1009-0630/16/2/12

Performance of Dielectric Barrier Discharge Reactors on Elemental Mercury Oxidation in the Coal-Fired Flue Gas

Funds: supported by National Natural Science Foundation of China (No.51177007) and Ministry of Science and Technology of China (No.2009AA064101-4)
More Information
  • Received Date: August 20, 2013
  • The oxidation of elemental mercury (Hg0 ) by dielectric barrier discharge reactors was studied at room temperature, where concentric cylinder discharge reactor (CCDR) and surface discharge plasma reactor (SDPR) were employed. The parameters (e.g. Hg 0 oxidation efficiency, energy constant, energy yield, energy consumption, and O 3 concentration) were discussed. From comparison of the two reactors, higher Hg0 oxidation efficiency and energy constant in the SDPR system were obtained by using lower specific energy density. At the same applied voltage, energy yield in the SDPR system was larger than that in the CCDR system, and energy consumption in the SDPR system was much less. Additionally, more O 3 was generated in the SDPR system. The experimental results showed that 98% of Hg 0 oxidation efficiency, 0.6 J·L −1 of energy constant, 13.7 µg·kJ −1 of energy yield, 15.1 eV·molecule −1 of energy consumption, and 12.7 µg·J −1 of O 3 concentration were achieved in the SDPR system. The study reveals an alternative and economical technology for Hg 0 oxidation in the coal-fired flue gas.
  • 1 U. S. Environmental Protection Agency. 1997, Wash-ington, DC;
    2 Pavlish J H, Sondreal E A, Mann M D, et al. 2003,Fuel Process. Technol., 82: 89;
    3 Li H L, Wu C Y, Li Y, et al. 2011, Environ. Sci. Tech-nol., 45, 7394;
    4 Milford J B, Pienciak A. 2009, Environ. Sci. Technol.,43: 2669;
    5 Wu Y, Wang S, Streets D G, et al. 2006, Environ. Sci.Technol., 40: 5312;
    6 Zhang L, Wang S X, Meng Y, et al. 2012, Environ.Sci. Technol., 46: 6385;
    7 Zhuang Y, Thompson J S, Zygarlicke C J, et al. 2004,Environ. Sci. Technol., 38: 5803;
    8 Li H L, Wu C Y, Li Y, et al. 2012, Applied Catalysis B: Environmental., 111-112: 381;
    9 Senior C L, Helble J J, Saroˉm A F. 2000, Fuel Pro-cess. Technol., 65: 263;
    10 Galbreath K C, Zygarlicke C J. 1996, Environ. Sci.Technol., 30: 2421159 Plasma Science and Technology, Vol.16, No.2, Feb. 2014;
    11 Guti?errez Ortiz F J, Navarrete B, Ca~nadas L, et al.2007, Chem. Eng. J., 127: 131;
    12 Chen Z, Mathur V K. 2002, Ind. Eng. Chem. Res., 41:2082;
    13 Shang K F, Wu Y, Li J, et al. 2006, Plasma Chem.Plasma Process, 26: 443;
    14 Jiang N, Lu N, Li J, et al. 2012, Plasma Science and Technology, 14: 140;
    15 Wang M Y, Zhu T L, Luo H J, et al. 2011, Ind. Eng.Chem. Res., 50: 5914;
    16 Byun Y, Ko K B, Cho M, et al. 2008, Chemosphere,72: 652;
    17 Zhang Y, Li D, Wang H C. 2010, Plasma Science and Technology, 12: 702;
    18 Chen Z, Mannava D P, Mathur V K. 2006, Ind. Eng.Chem. Res., 45: 6050;
    19 Ko K B, Byun Y, Cho M, et al. 2008, Chemosphere,71: 1674;
    20 Jeong J, Jurng J. 2007, Chemosphere, 68: 2007 ;
    21 Kim H H, Kobara H, Ogata A, et al. 2005, IEEE Trans.Ind. Appl., 4: 206;
    22 Takaki K, Hatanaka Y, Arima K, et al. 2009, Vacuum,83: 128;
    23 Birdsall C M, Jenkins A C, Spadinger E. 1952, Anal.Chem., 24: 662;
    24 Li J, Wang T C, Lu N, et al. 2011, Plasma Sources Sci. Technol., 20: 034019;
    25 Liang W J, Fang H P, Li J, et al. 2011, Journal of Electrostatics, 69: 206;
    26 Mok Y S, Huh Y J. 2005, Plasma Chemistry and Plasma Processing, 25: 625;
    27 Kraus M, Eliasson B, Kogelschatz U, et al. 2001, Phys.Chem. Chem. Phys., 3: 294;
    28 Reddy E L, Biju V M, Subrahmanyam C. 2011, Int. J.Hydrogen Energy, 37: 1;
    29 Penetrante B M, Hsiao M C, Bardsley J N, et al. 1997,Plasma Sources Sci. Technol., 6: 251;
    30 Kim H H. 2004, Plasma Process. Polym., 1: 91;
    31 Marotta E, Callea A, Rea M, et al. 2007, Environ. Sci.Technol., 41: 5862;
    32 Naidis G V. 1997, J. Phys. D: Appl. Phys., 30: 1214;
    33 Marinov D, Guaitella O, Roussseau A, et al. 2010, J.Phys. D: Appl. Phys., 43: 115203;
    34 Malik M A, Kolb J F, Sun Y H, et al. 2011, Journal of Hazardous Materials, 197: 220;
    35 Guaitella O, Hubner M, Welzel S, et al. 2010, Plasma Sources Sci. Technol., 19: 045026
  • Related Articles

    [1]Jutao YANG (杨巨涛), Jianguo WANG (王建国), Qingliang LI (李清亮), Haiqin CHE (车海琴), Shuji HAO (郝书吉). Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations[J]. Plasma Science and Technology, 2019, 21(7): 75301-075301. DOI: 10.1088/2058-6272/ab0bcd
    [2]Yadong HUANG (黄亚冬), Benmou ZHOU (周本谋). Active control of noise amplification in the flow over a square leading-edge flat plate utilizing DBD plasma actuator[J]. Plasma Science and Technology, 2018, 20(5): 54021-054021. DOI: 10.1088/2058-6272/aab5bb
    [3]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [4]ZHENG Dianfeng (郑殿峰). The Feasibility of Applying AC Driven Low-Temperature Plasma for Multi-Cycle Detonation Initiation[J]. Plasma Science and Technology, 2016, 18(11): 1110-1115. DOI: 10.1088/1009-0630/18/11/09
    [5]WANG Yuling (王玉玲), GAO Chao (高超), WU Bin (武斌), HU Xu (胡旭). Simulation of Flow Around Cylinder Actuated by DBD Plasma[J]. Plasma Science and Technology, 2016, 18(7): 768-774. DOI: 10.1088/1009-0630/18/7/12
    [6]SUN Min (孙敏), YANG Bo (杨波), PENG Tianxiang (彭天祥), LEI Mingkai (雷明凯). Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control[J]. Plasma Science and Technology, 2016, 18(6): 680-685. DOI: 10.1088/1009-0630/18/6/16
    [7]WANG Xifeng (王喜凤), SONG Yuanhong (宋远红), ZHAO Shuxia (赵书霞), DAI Zhongling (戴忠玲), WANG Younian (王友年). Hybrid Simulation of Duty Cycle Influences on Pulse Modulated RF SiH4/Ar Discharge[J]. Plasma Science and Technology, 2016, 18(4): 394-399. DOI: 10.1088/1009-0630/18/4/11
    [8]Sohrab Gholamhosein POURYOUSSEFI, Masoud MIRZAEI. Experimental Study of the Unsteady Actuation Effect on Induced Flow Characteristics in DBD Plasma Actuators[J]. Plasma Science and Technology, 2015, 17(5): 415-424. DOI: 10.1088/1009-0630/17/5/09
    [9]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [10]ZHENG Borui (郑博睿), GAO Chao(高超), LI Yibin(李一滨), LIU Feng(刘峰), LUO Shijun(罗时钧. Flow Control over a Conical Forebody by Duty-Cycle Actuations[J]. Plasma Science and Technology, 2012, 14(1): 58-63. DOI: 10.1088/1009-0630/14/1/13

Catalog

    Article views (247) PDF downloads (1143) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return