Advanced Search+
CHEN Huixia(陈慧黠), XIU Zhilong(修志龙), BAI Fengwu(白凤武). Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma[J]. Plasma Science and Technology, 2014, 16(6): 602-607. DOI: 10.1088/1009-0630/16/6/12
Citation: CHEN Huixia(陈慧黠), XIU Zhilong(修志龙), BAI Fengwu(白凤武). Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma[J]. Plasma Science and Technology, 2014, 16(6): 602-607. DOI: 10.1088/1009-0630/16/6/12

Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

Funds: supported by National Natural Science Foundation of China (No. 20576018)
More Information
  • Received Date: March 24, 2013
  • Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)- linked xylose reductases and NAD + -linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.
  • 1.Farrell A E, Plevin R J, Turner B T, et al. 2006, Sci- ence, 311: 506.
    2.Bai.F.W,.Anderson.W.A,.Moo-Young.M. 2008,Biotechnol. Adv., 26: 89.
    3.Balat M, Balat H. 2009, Appl. Energ., 86: 2273.
    4.Makenete A, Lemmer W, Kupka J. 2008, Int. Food.Agribusiness Manage. Rev., 11: 101.
    5.Lynd L R, Cushman J H, Nichols R J, et al. 1991,Science, 251: 1318.
    6.Dodds D R, Gross R A. 2007, Science, 318: 1250.
    7.Jordan N, Boody G, Broussard W, et al. 2007, Science,316: 1570.
    8.Aristidou A, Penttil¨a M. 2000, Curr. Opin. Biotech.,11: 187.
    9.Lee W J, Ryu Y W, Seo J H. 2000, Process Biochem.,35: 1199.
    10.Bruinenberg P M, Bot H P M, Dijken J P, et al. 1984,Appl. Microbiol. Biot., 19: 256.
    11.Chu B C H, Lee H. 2007, Biotechnol. Adv., 25: 425.
    12.Gregory W C. 1955, Argon. J., 47: 396.
    13.Kayhart M. 1956, Radiat. Res., 4: 65.
    14.Predieri S, Magli M, Zimmerman R H. 1997, Euphyt-ica, 93: 227.
    15.Mazza C A, Battista D, Zima A M, et al. 1999, Plant.Cell Environ., 22: 61.
    16.Chen Y P, Yue M, Wang X L. 2005, Plant Sci., 168:601.
    17.Gu S B, Yao J M, Yuan Q P, et al. 2006, Appl. Micro-biol. Biot., 72: 456.
    18.Laroussi M, Richardsonand J P, Dobbs F C. 2002,Appl. Phys. Lett., 81: 772.
    19.Gaunt L F, Beggs C B, Georghiou G E. 2006, IEEE.Trans. Plasma Sci., 34: 1257.
    20.Yu H, Xiu Z L, Ren C S, et al. 2005, IEEE Trans.Plasma Sci., 33: 1405.
    21.Wang C H, Wu Y, Li G F. 2008, J. Electrostat., 66:71.
    22.Wang L Y, Huang Z L, Li G, et al. 2010, J. Appl.Microbiol., 108: 851.
    23.Dong X Y, Xiu Z L, Hou Y M, et al. 2009, IEEE Trans.Plasma Sci., 37: 920.
    24.Carratore R D, Croce C D, Simili M, et al. 2002, Mut.Res.-Gen. Tox. En., 513: 183.
    25.Ghaly A E, Ben-Hassan R M. 1993, Appl. Biochem.Biotech., 43: 77.
    26.Favre C, Aguilar P S, Carrillo M C. 2008, Free. Radi-cal. Bio. Med., 45: 1446.
    27.Verduyn C, Van Kleef R, Frank J, et al. 1985, Biochem.J., 226: 669.
    28.Neuhauser W, Haltrich D, Kulbe K D, et al. 1997,Biochem. J., 326: 683.
    29.Bradford M M. 1976, Anal. Biochem., 72: 248.
    30.Sun L H, Jiang B, Xiu Z L. 2009, Biotechnol. Lett.,31: 371.
    31.Miller G L. 1959, Anal. Chem., 31: 426.
    32.Moreau M, Orange N, Feuilloley M G J. 2008, Biotech-nol. Adv., 26: 610.
    33.Deng X, Shi J, Kong M G. 2006, IEEE Trans. Plasma.Sci., 34: 1310.
    34.Chen H X, Bai F W, Xiu Z L. 2010,.IEEE Trans.Plasma. Sci., 38: 1885.
    35.M.ller P, Wallin H. 1998, Mutat. Res.-Rev. Mutat.,410: 271.
    36.D′.az-Llera.S, Podlutsky A,.Osterholm.A.M,.et.al..2000, Mut. Res.-Gen. Tox. En., 469: 51.
    37.Ralser M, Wamelink M M, Kowald A, et al. 2007, J.Biol., 6: 10.
    38.Lebeau T, Jouenne T, Junter G A. 1997, Enzyme Mi-crob. Tech., 21: 265.
    39.Meinander N Q, Hahn-H¨agerdal B. 1997, Appl. Envi-ron. Microb., 63: 1959.
    40.Meinander.N.Q,.Boels.I,.Hahn-H¨agerdal.B. 1999,Bioresour. Technol., 68: 79.
    41.Grotkj.r T, Christakopoulos P, Nielsen J, et al. 2005,Metab. Eng., 7: 437.
    42.G′.rio F M, Peito M A, Amaral-Colla.co M T. 1989,Appl. Microbiol. Biot., 32: 199.
  • Related Articles

    [1]Pan LU, Dong-Wook KIM, Dong-Wha PARK. Simple reactor for the synthesis of silver nanoparticles with the assistance of ethanol by gas–liquid discharge plasma[J]. Plasma Science and Technology, 2019, 21(4): 44005-044005. DOI: 10.1088/2058-6272/aaeada
    [2]Yunfeng HAN (韩云峰), Shaoyang WEN (温少扬), Hongwei TANG (汤红卫), Xianhu WANG (王贤湖), Chongshan ZHONG (仲崇山). Influences of frequency on nitrogen fixation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2018, 20(1): 14001-014001. DOI: 10.1088/2058-6272/aa947a
    [3]Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903
    [4]Hao YUAN (袁皓), Wenchun WANG (王文春), Dezheng YANG (杨德正), Zilu ZHAO (赵紫璐), Li ZHANG (张丽), Sen WANG (王森). Atmospheric air dielectric barrier discharge excited by nanosecond pulse and AC used for improving the hydrophilicity of aramid fibers[J]. Plasma Science and Technology, 2017, 19(12): 125401. DOI: 10.1088/2058-6272/aa8766
    [5]N KHADIR, K KHODJA, A BELASRI. Methane conversion using a dielectric barrier discharge reactor at atmospheric pressure for hydrogen production[J]. Plasma Science and Technology, 2017, 19(9): 95502-095502. DOI: 10.1088/2058-6272/aa6d6d
    [6]Fangmin HUANG (黄芳敏), Zhouyang LONG (龙洲洋), Sa LIU (刘飒), Zhenglong QIN (秦正龙). Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose[J]. Plasma Science and Technology, 2017, 19(4): 45504-045504. DOI: 10.1088/2058-6272/aa4c20
    [7]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [8]DONG Xiaoyu(董晓宇), YUAN Yulian(袁玉莲), TANG Qian(唐乾), DOU Shaohua(窦少华), DI Lanbo(底兰波), ZHANG Xiuling(张秀玲). Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae[J]. Plasma Science and Technology, 2014, 16(1): 73-78. DOI: 10.1088/1009-0630/16/1/16
    [9]WANG Qiuying (王秋颖), WU Peng (伍鹏), GU Fan (顾璠). Coal Liquefaction by Using Dielectric Barrier Discharge Plasma[J]. Plasma Science and Technology, 2013, 15(7): 654-658. DOI: 10.1088/1009-0630/15/7/10
    [10]HU Miao(胡淼), GUO Yun(郭赟). The Effect of Air Plasma on Sterilization of Escherichia coli in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(8): 735-740. DOI: 10.1088/1009-0630/14/8/10

Catalog

    Article views (206) PDF downloads (1313) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return