Advanced Search+
Fangmin HUANG (黄芳敏), Zhouyang LONG (龙洲洋), Sa LIU (刘飒), Zhenglong QIN (秦正龙). Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose[J]. Plasma Science and Technology, 2017, 19(4): 45504-045504. DOI: 10.1088/2058-6272/aa4c20
Citation: Fangmin HUANG (黄芳敏), Zhouyang LONG (龙洲洋), Sa LIU (刘飒), Zhenglong QIN (秦正龙). Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose[J]. Plasma Science and Technology, 2017, 19(4): 45504-045504. DOI: 10.1088/2058-6272/aa4c20

Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

Funds: This research is funded by Natural Science Foundation of the Higher Education Institutions of Jiangsu Province (No. 15KJB150005, No. 15KJD530002, No. 14KJB350003) and Natural Science Foundation of JSNU (No. 9212314108).
More Information
  • Received Date: July 28, 2016
  • Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.
  • [1]
    Huber G W, Iborra S and Corma A 2006 Chem. Rev. 106 4044
    [2]
    Hassanzadeh S, Aminlashgari N and Hakkarainen M 2014 Carbohyd. Polym. 112 448
    [3]
    De Vasconcelos S M et al 2013 Bioresour. Technol. 135 46
    [4]
    Vo H T et al 2014 Bioresour. Technol. 167 484
    [5]
    Qu Y et al 2014 Bioresour. Technol. 162 358
    [6]
    Sun Y and Cheng J 2002 Bioresour. Technol. 83 1
    [7]
    Morales Delarosa S, Campos Martin J M and Fierro J L G 2012 Chem. Eng. J. 181 538
    [8]
    Zhang Z H et al 2012 Bioresour. Technol. 112 151
    [9]
    Singhania R R et al 2013 Bioresour. Technol. 127 500
    [10]
    Zhao Y, Lu W J and Wang H T 2009 Chem. Eng. J. 150 411
    [11]
    Azubuike C P et al 2011 Cellulose 19 425
    [12]
    Arantes V and Saddler J N 2011 Technol. Biofuel. 4 3
    [13]
    Ni J et al 2013 Bioresour. Technol. 137 106
    [14]
    Yu J et al 2009 Bioresour. Technol. 100 903
    [15]
    Zhang Y et al 2015 Cellulose 22 1495
    [16]
    Eliana C et al 2014 Fuel 118 41
    [17]
    NgesI A et al 2016 Fuel 166 29
    [18]
    Zhao J et al 2011 Biochem. Eng. J. 56 158
    [19]
    Huang F M et al 2010 Chem. Eng. J. 162 250
    [20]
    Hu Y et al 2013 Sep. Purif. Technol. 120 191
    [21]
    Bratsch S G 1989 J. Phys. Chem. Rec. Data 18 1
    [22]
    Schultz-Jensen N et al 2011 Appl. Biochem. Biotech. 163 558
    [23]
    Wang L et al 2013 J. Clean Prod. 54 323
    [24]
    Kádár Z et al 2015 Biomass and Bioenergy 81 26
    [25]
    Schultz-Jensen N et al 2011 Appl. Biochem. Biotech. 165 1010
    [26]
    Kolarova K et al 2013 Cellulose 20 953
    [27]
    Flynn C N, Byrne C P and Meenan B J 2013 Surf. Coat. Tech. 233 108
    [28]
    2011 Pulp board for viscose ?ber—determination of viscosity FZ/T 50010. 3-2011 Ministry of Industry and Information Technology of the People’s Republic of China
    [29]
    Segal L et al 1959 Text Res. J. 29 786
    [30]
    Benoit M et al 2012 Green Chem. 14 2212
    [31]
    Huang F M et al 2012 J. Electrostat. 70 43
    [32]
    Asghar A, Abdul Raman A A and Wan Daud W M A 2015 J. Clean Prod. 87 826
    [33]
    Singh B et al 2000 Polymer International 49 1444
    [34]
    Nelson M L and O’Connor R T 1964 J. Appl. Poly Sci. 8 1311
  • Related Articles

    [1]N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333
    [2]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [3]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [4]Kerong HE (何科荣), Hui CHEN (陈辉), Sanqiu LIU (刘三秋). Effect of plasma absorption on dust lattice waves in hexagonal dust crystals[J]. Plasma Science and Technology, 2018, 20(4): 45001-045001. DOI: 10.1088/2058-6272/aaaadb
    [5]Ranjit K KALITA, Manoj K DEKA, Apul N DEV, Jnanjyoti SARMA. Characteristics of dust acoustic waves in dissipative dusty plasma in the presence of trapped electrons[J]. Plasma Science and Technology, 2017, 19(5): 55303-055303. DOI: 10.1088/2058-6272/aa5ff1
    [6]FENG Fan (冯帆), ZHANG Yongliang (张永亮), YAN Jia (闫佳), LIU Fucheng (刘富成), DONG Lifang (董丽芳), HE Yafeng (贺亚峰). Cycloid Motions of Aggregates in a Dust Plasma[J]. Plasma Science and Technology, 2016, 18(1): 67-71. DOI: 10.1088/1009-0630/18/1/12
    [7]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01
    [8]HONG Rongjie (洪荣杰), YANG Zhongshi (杨钟时), NIU Guojian (牛国鉴), LUO Guangnan (罗广南). A Molecular Dynamics Study on the Dust-Plasma/Wall Interactions in the EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(4): 318-322. DOI: 10.1088/1009-0630/15/4/03
    [9]MA Donglin (马栋林), ZHANG Xijun (张玺君), ZHANG Liping (张丽萍). The Effects of Inhomogeneity and Adiabatic Dusty Charge Fluctuation on Solitary Waves[J]. Plasma Science and Technology, 2013, 15(1): 7-11. DOI: 10.1088/1009-0630/15/1/02
    [10]Yukihiro TOMITA, Gakushi KAWAMURA, HUANG Zhihui, PAN Yudong, YAN Longwen. Dust Charging and Dynamics in Tokamaks[J]. Plasma Science and Technology, 2011, 13(1): 11-14.
  • Cited by

    Periodical cited type(4)

    1. Fu, J., Zhang, L., Zhang, M. Effect of dust size distribution and nonadiabatic charge variation on dispersion relation for linear waves in inhomogeneous complex plasmas. AIP Advances, 2024, 14(3): 035004. DOI:10.1063/5.0194497
    2. Zhang, L., Wang, X., Zheng, J. et al. Linear characteristics of dust acoustic waves in two dimensional inhomogeneous complex plasmas. AIP Advances, 2023, 13(5): 055012. DOI:10.1063/5.0150589
    3. Zhang, L.P., Zheng, J.Q. Dust acoustic shock waves in nonuniform dusty plasmas with kappa-distributed ions and electrons, nonadiabatic dust charge fluctuation and dust size distribution. Indian Journal of Physics, 2023. DOI:10.1007/s12648-023-03036-9
    4. Zhang, L., Zheng, J., Liu, C. et al. The shock wave solutions of modified ZK Burgers equation in inhomogeneous dusty plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(3): 249-257. DOI:10.1515/zna-2021-0283

    Other cited types(0)

Catalog

    Article views (276) PDF downloads (690) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return