Advanced Search+
Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Design of a MT-DBD reactor for H2S control[J]. Plasma Science and Technology, 2017, 19(4): 45501-045501. DOI: 10.1088/2058-6272/aa57e8
Citation: Xu CAO (曹栩), Weixuan ZHAO (赵玮璇), Renxi ZHANG (张仁熙), Huiqi HOU (侯惠奇), Shanping CHEN (陈善平), Ruina ZHANG (张瑞娜). Design of a MT-DBD reactor for H2S control[J]. Plasma Science and Technology, 2017, 19(4): 45501-045501. DOI: 10.1088/2058-6272/aa57e8

Design of a MT-DBD reactor for H2S control

Funds: The financial support for this research was provided by National Natural Science Foundation of China (Nos. 21577023), and the Key Project supported by the Science and Technology Commission of Shanghai Municipality (No. 15DZ1205904).
More Information
  • Received Date: September 07, 2016
  • This study aimed to discuss the removal of hydrogen sulfide (H2S) with non-thermal plasma produced by a multilayer tubular dielectric barrier discharge reactor, which is useful in the field of plasma environmental applications. We explored the in?uence of various factors upon H2S removal efficiency (ηH2S) and energy yield (Ey), such as specific energy density (SED), initial concentration, gas flow velocity and the reactor configuration. The study showed that we can achieve ηH2S of 91% and the best Ey of 3100 mg kWh−1 when we set the SED, gas flow velocity, initial H2S concentration and layers of quartz tubes at 33.2 J l−1, 8.0 ms−1,30 mgm−3 and five layers, correspondingly. The average rate constant for the decomposition of hydrogen sul?de was 0.206 g m−3 s−1. In addition, we also presented the optimized working conditions, by-product analysis and decomposition mechanism.
  • [1]
    Gustol K et al 2012 Int. J. Hydrog. Energy 37 1335
    [2]
    John S et al 2009 Chem. Eng. Sci. 64 4826
    [3]
    Reddy E L, Biju V M and Subrahmanyam C 2012 Appl. Energy 95 87
    [4]
    Huang L, Xia L, Dong W and Hou H 2013 Chem. Eng. J. 228 1066
    [5]
    Asaoka S et al 2012 J. Colloid Interface Sci. 377 284
    [6]
    Fellah M F 2016 Fuel Process Technol. 144 191
    [7]
    Lestari R A et al 2016 J. Environ. Chem. Eng. 4 2370
    [8]
    Ko T H, Chu H and Liou Y J 2007 J. Hazardous Mater. 147 334
    [9]
    Chen J and Xie Z M 2013 J. Hazardous Mater. 261 38
    [10]
    Fang H J et al 2007 Chemosphere 69 1734
    [11]
    Nunally T et al 2009 Int. J. Hydrog. Energy 34 7618
    [12]
    Liang W J et al 2011 J. Electrost. 29 206
    [13]
    Nie Y et al 2013 Environ. Sci. Technol. 47 7934
    [14]
    Ye Z et al 2008 J. Hazardous Mater. 156 356
    [15]
    Xia L Y et al 2008 J. Hazardous Mater. 152 113
    [16]
    Zheng G Y et al 2003 Plasma Chem. Plasma Process. 23 127
    [17]
    Zhang H et al 2012 Plasma Sci. Technol. 14 134
    [18]
    Hou J et al 1999 J. Environ. Sci. 11 82
    [19]
    Simek M et al 2001 J. Phys. D: Appl. Phys. 34 3185
    [20]
    Shibata I et al 2006 Cellulose 13 73
  • Related Articles

    [1]Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c
    [2]Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111
    [3]Lin WANG (王林), Junkang YAO (姚军康), Zheng WANG (王政), Hongqiao JIAO (焦洪桥), Jing QI (齐静), Xiaojing YONG (雍晓静), Dianhua LIU (刘殿华). Fast and low-temperature elimination of organic templates from SBA-15 using dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2018, 20(10): 101001. DOI: 10.1088/2058-6272/aad547
    [4]Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62
    [5]Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903
    [6]Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04
    [7]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [8]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [9]N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07
    [10]ZHANG Hong(张虹), JI Tianyi(纪天一), ZHANG Renxi(张仁熙), HOU Huiqi(侯惠奇). Destruction of H2S gas with a Combined Plasma Photolysis (CPP) reactor[J]. Plasma Science and Technology, 2012, 14(2): 134-139. DOI: 10.1088/1009-0630/14/2/10

Catalog

    Article views (308) PDF downloads (754) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return