Advanced Search+
Wei ZHONG (钟伟), AoXU (徐翱), Yunlong LIU (刘云龙), Lei CHEN (陈磊). Visualization of particulates distribution from electrode erosion[J]. Plasma Science and Technology, 2018, 20(2): 25502-025502. DOI: 10.1088/2058-6272/aa9327
Citation: Wei ZHONG (钟伟), AoXU (徐翱), Yunlong LIU (刘云龙), Lei CHEN (陈磊). Visualization of particulates distribution from electrode erosion[J]. Plasma Science and Technology, 2018, 20(2): 25502-025502. DOI: 10.1088/2058-6272/aa9327

Visualization of particulates distribution from electrode erosion

Funds: This work is supported by Science & Development Foundation of CAEP (Grant No. 2015B0402085).
More Information
  • Received Date: June 28, 2017
  • Particulates generated from electrode erosion in gas spark gap is inevitable and may initiate self-breakdown behavior with high risk. Traditionally, this problem is addressed by empirical method qualitatively. To push this old problem forward, this paper conducts laser confocal microscopy measurement of eroded surface and a statistical method is introduced to obtain visualization of particulates distribution from electrode erosion after different shots. This method allows dense particulates to be classified with their heights in z direction and scattered figures of particulates within certain height range are obtained. Results indicate that the higher-than-10 μm particulates start to emerge after 200 discharge shots and particulates number has a waved radial distribution with a 0.5 mm wide deposition zone. Based on these quantitative results, the risk of reignition and field-distortion failure that are triggered by particulates can be assessed.
  • [1]
    Zhong W et al 2017 J. Phys. D: Appl. Phys. 50 015202
    [2]
    Wang H et al 2011 Europhys. Lett. 96 45001
    [3]
    Wang H et al 2011 Europhys. Lett. 96 45003
    [4]
    Liu X D et al 2013 Plasma Sci. Technol. 15 812
    [5]
    Li X A et al 2015 IEEE Trans. Plasma Sci. 43 1049
    [6]
    Qi B et al 2014 IEEE Trans. Dielectr. Electr. Insul. 21 766
    [7]
    Insepov Z and Norem J 2013 J. Vac. Sci. Technol. A 31 011302
    [8]
    Engel T G et al 1995 IEEE Trans. Magn. 31 709
    [9]
    Zhong W et al 2016 Experimental investigation of electrode erosion of triggered spark gap Proc. 27th Int. Symp. on Discharges and Electrical Insulation in Vacuum (Suzhou, China: IEEE) vol 485
    [10]
    Wang L J et al 2014 IEEE Trans. Plasma Sci. 42 1393
    [11]
    Forbes R G, Edgcombe C J and Valdrè U 2003 Ultramicroscopy 95 57
    [12]
    Ohira K et al 1999 IEEE Trans. Dielectr. Electr. Insul. 6 455
    [13]
    Gray E W 1986 J. Appl. Phys. 59 3709
  • Related Articles

    [1]Fanzheng ZENG, Song LI, Hao CAI, Quancai ZHANG, Jinhong WEI, Junting WANG, Zhaohua LIU, Lei WANG, Jingming GAO, Hong WAN, Baoliang QIAN. Investigation on the electrode surface roughness effects on a repetitive self-breakdown gas switch[J]. Plasma Science and Technology, 2022, 24(6): 065506. DOI: 10.1088/2058-6272/ac5ffb
    [2]Hongyu DAI (戴宏宇), Lee LI (李黎), Shuai REN (任帅), Jingrun GUO (郭景润), Xin GONG (宫鑫), Anthony Bruce MURPHY. Effect of dilution gas composition on the evolution of graphite electrode characteristics in the spark gap switch[J]. Plasma Science and Technology, 2021, 23(6): 64009-064009. DOI: 10.1088/2058-6272/abf126
    [3]Jung-Hwan IN, Youngmin MOON, Jang-Hee CHOI, Sungho JEONG. Consistency of intensity ratio between spectral lines with similar self-absorption characteristics during ungated laser induced breakdown spectroscopy measurements[J]. Plasma Science and Technology, 2019, 21(3): 34010-034010. DOI: 10.1088/2058-6272/aaed60
    [4]Yangting FU (傅杨挺), Zongyu HOU (侯宗余), Yoshihiro DEGUCHI (出口祥啓), Zhe WANG (王哲). From big to strong: growth of the Asian laser-induced breakdown spectroscopy community[J]. Plasma Science and Technology, 2019, 21(3): 30101-030101. DOI: 10.1088/2058-6272/aaf873
    [5]Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
    [6]ihao TIE (铁维昊), Cui MENG (孟萃), Yuting ZHANG (张雨婷), Zirang YAN (闫自让), Qiaogen ZHANG (张乔根). Analysis on discharge process of a plasma-jet trigered gas spark switch[J]. Plasma Science and Technology, 2018, 20(1): 14009-014009. DOI: 10.1088/2058-6272/aa8cbe
    [7]MENG Guodong (孟国栋), CHENG Yonghong (成永红), DONG Chengye (董承业), WU Kai (吴锴). Experimental Study on Electrical Breakdown for Devices with Micrometer Gaps[J]. Plasma Science and Technology, 2014, 16(12): 1083-1089. DOI: 10.1088/1009-0630/16/12/01
    [8]LIU Yiying (刘懿莹), WU Yi (吴翊), RONG Mingzhe (荣命哲), HE Hailong (何海龙). Simulation of the Effect of a Metal Vapor Arc on Electrode Erosion in Liquid Metal Current Limiting Device[J]. Plasma Science and Technology, 2013, 15(10): 1006-1011. DOI: 10.1088/1009-0630/15/10/09
    [9]LIU Xuandong (刘轩东), WANG Hu (王虎), LI Xiaoang (李晓昂), ZHANG Qiaogen (张乔根), et al.. Estimation of Surface Roughness due to Electrode Erosion in Field-Distortion Gas Switch[J]. Plasma Science and Technology, 2013, 15(8): 812-816. DOI: 10.1088/1009-0630/15/8/18
    [10]WENG Ming (翁明), XU Weijun (徐伟军). The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube[J]. Plasma Science and Technology, 2012, 14(11): 1024-1029. DOI: 10.1088/1009-0630/14/11/12

Catalog

    Article views (191) PDF downloads (449) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return