Advanced Search+
Lin SHEN (申林), Lei GONG (宫蕾), Shuhua CHEN (陈淑花), Shiping ZHAN (詹世平), Cheng ZHANG (章程), Tao SHAO (邵涛). Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane[J]. Plasma Science and Technology, 2018, 20(6): 65510-065510. DOI: 10.1088/2058-6272/aaada8
Citation: Lin SHEN (申林), Lei GONG (宫蕾), Shuhua CHEN (陈淑花), Shiping ZHAN (詹世平), Cheng ZHANG (章程), Tao SHAO (邵涛). Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane[J]. Plasma Science and Technology, 2018, 20(6): 65510-065510. DOI: 10.1088/2058-6272/aaada8

Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane

Funds: The authors gratefully acknowledge the financial support from the Opening Project of the State Key Laboratory of Polymer Materials Engineering (Sichuan University)(Grant No. Sklpme2015-4-24) and the Provincial Department of Education Science General Foundation of Liaoning (Contract No. L2015017).
More Information
  • Received Date: January 06, 2018
  • In this paper, low temperature plasma is used to modify the surface of barium titanate (BaTiO3) nanoparticles in order to enhance the interfacial compatibility between ferroelectric poly (vinylidene fluoride)(PVDF) and BaTiO3 nanoparticles. The results demonstrate that oxygenic groups are successfully attached to the BaTiO3 surface, and the quantity of the functional groups increases with the treatment voltage. Furthermore, the effect of modified BaTiO3 nanoparticles on the morphology and crystal structure of the PVDF/BaTiO3 membrane is investigated. The results reveal that the dispersion of BaTiO3 nanoparticles in the PVDF matrix was greatly improved due to the modification of the BaTiO3 nanoparticles by air plasma. It is worth noting that the formation of a β-phase in a PVDF/modified BaTiO3 membrane is observably promoted, which results from the strong interaction between PVDF chains and oxygenic groups fixed on the BaTiO3 surface and the better dispersion of BaTiO3 nanoparticles in the PVDF matrix. Besides, the PVDF/modified BaTiO3 membrane at the treatment voltage of 24 kV exhibits a lower water contact angle (≈68.4°)compared with the unmodified one (≈86.7°). Meanwhile, the dielectric constant of PVDF/BaTiO3 nanocomposites increases with the increase of working voltage.
  • [1]
    Fabiano S et al 2014 ACS Appl. Mater. Interfaces 6 01438
    [2]
    Ke K et al 2014 Polymer 55 02611
    [3]
    Sinha T K et al 2016 ACS Appl. Mater. Interfaces 8 2414986
    [4]
    Ren X H et al 2017 Nano Energy 35 233
    [5]
    Sharma T et al 2012 Sens. Actuators A 177 87
    [6]
    Bae S H et al 2013 ACS Nano 7 3130
    [7]
    Sharma M et al 2014 Macromolecules 47 1392
    [8]
    Ren X H et al 2016 ACS Appl. Mater. Interfaces 8 26190
    [9]
    Broadhurst M G et al 1978 J. Appl. Phys. 49 104992
    [10]
    Lovinger A J et al 1982 Macromolecules 15 40
    [11]
    Lovinger A J et al 1983 Science 220 46021115
    [12]
    Mandal D et al 2011 J. Phys. Chem. B 115 10567
    [13]
    Martins P et al 2014 Prog. Polym. Sci. 39 04683
    [14]
    Tian H L et al 2017 Electrochim. Acta 247 787
    [15]
    Jana S et al 2015 Phys. Chem. Chem. Phys. 17 17429
    [16]
    Yang X J et al 2013 Adv. Mater. Res. 668 17
    [17]
    Jiang S L et al 2009 Curr. Appl. Phys. 9 05956
    [18]
    Xie L et al 2014 J. Mater. Chem. A 2 5244
    [19]
    Zhao Y W et al 2016 Int. J. Hydrogen Energy 41 16913
    [20]
    Rahman M A et al 2013 J. Alloys Compd. 581 724
    [21]
    Krishnamoorti R et al 2007 MRS Bulletin 32 341
    [22]
    Fan Y et al 2016 Appl. Surf. Sci. 364 798
    [23]
    Zhou T et al 2011 ACS Appl. Mater. Interfaces 3 2184
    [24]
    Xie L et al 2013 ACS Appl. Mater. Interfaces 5 1747
    [25]
    Zhao Y et al 2015 J. Adv. Phys. 4 4
    [26]
    Shen Y et al 2013 Appl. Phys. Lett. 103 1939
    [27]
    Xie L et al 2011 J. Mater. Chem. 21 5897
    [28]
    Yang K et al 2013 Chem. Mater. 25 2327
    [29]
    Gong L et al 2015 Composites Part B 73 49
    [30]
    Zhang C et al 2018 Plasma Sci. Technol. 20 014011
    [31]
    Mohaoatro et al 2017 High Volt. 2 60
    [32]
    Yan Z et al 2017 Plasma Sci. Technol. 19 035501
    [33]
    Cheng H et al 2016 High Volt. 1 62
    [34]
    Long T M et al 2006 Langmuir 22 4104
    [35]
    Zhang C et al 2010 IEEE Trans. Plasma Sci. 38 1517
    [36]
    Wang R et al 2016 Appl. Surf. Sci. 367 401
    [37]
    Zhang C et al 2014 Appl. Surf. Sci. 311 468
    [38]
    Shao T et al 2014 Appl. Phys. Lett. 105 071607
    [39]
    Shao T et al 2011 Appl. Phys. Lett. 98 021503
    [40]
    Shao T et al 2010 Appl. Surf. Sci. 256 3888
    [41]
    Shao T et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1557
    [42]
    Wang R et al 2015 Appl. Surf. Sci. 328 509
    [43]
    Xie Q et al 2018 Plasma Sci. Technol. 20 025504
    [44]
    Wang R et al 2017 J. Appl. Phys. 122 233302
    [45]
    Mandal B P et al 2014 J. Phys. Chem. C 118 20819
    [46]
    Yu S et al 2009 Macromolecules 42 8870
    [47]
    Mendes F et al 2012 J. Mater. Sci. 47 1378
    [48]
    Li Y et al 2011 ACS Appl. Mater. Interfaces 3 4396
  • Related Articles

    [1]Jianchao LI, Xiaoqing ZHANG, Yu ZHANG, Abba Alhaji BALA, Huiping LIU, Guohong ZHOU, Nengchao WANG, Da LI, Zhongyong CHEN, Zhoujun YANG, Zhipeng CHEN, Jiaolong DONG, Yonghua DING, the J-TEXT Team. Investigation of the J-TEXT plasma events by k-means clustering algorithm[J]. Plasma Science and Technology, 2023, 25(8): 085103. DOI: 10.1088/2058-6272/acc3d1
    [2]Qingdong ZENG, Guanghui CHEN, Wenxin LI, Zitao LI, Juhong TONG, Mengtian YUAN, Boyun WANG, Honghua MA, Yang LIU, Lianbo GUO, Huaqing YU. Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine[J]. Plasma Science and Technology, 2022, 24(8): 084009. DOI: 10.1088/2058-6272/ac72e3
    [3]Liuyang ZHAN (詹浏洋), Xiaohong MA (马晓红), Weiqi FANG (方玮骐), Rui WANG (王锐), Zesheng LIU (刘泽生), Yang SONG (宋阳), Huafeng ZHAO (赵华凤). A rapid classification method of aluminum alloy based on laser-induced breakdown spectroscopy and random forest algorithm[J]. Plasma Science and Technology, 2019, 21(3): 34018-034018. DOI: 10.1088/2058-6272/aaf7bf
    [4]Chengxu LU (吕程序), Bo WANG (王博), Xunpeng JIANG (姜训鹏), Junning ZHANG (张俊宁), Kang NIU (牛康), Yanwei YUAN (苑严伟). Detection of K in soil using time-resolved laser-induced breakdown spectroscopy based on convolutional neural networks[J]. Plasma Science and Technology, 2019, 21(3): 34014-034014. DOI: 10.1088/2058-6272/aaef6e
    [5]Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1
    [6]Yangmin GUO (郭阳敏), Yun TANG (唐云), Yu DU (杜宇), Shisong TANG (唐仕松), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Yongfeng LU (陆永枫), Xiaoyan ZENG (曾晓雁). Cluster analysis of polymers using laser-induced breakdown spectroscopy with K-means[J]. Plasma Science and Technology, 2018, 20(6): 65505-065505. DOI: 10.1088/2058-6272/aaaade
    [7]Wei ZHANG (张伟), Tongyu WU (吴彤宇), Bowen ZHENG (郑博文), Shiping LI (李世平), Yipo ZHANG (张轶泼), Zejie YIN (阴泽杰). A real-time neutron-gamma discriminator based on the support vector machine method for the time-of-fiight neutron spectrometer[J]. Plasma Science and Technology, 2018, 20(4): 45601-045601. DOI: 10.1088/2058-6272/aaaaa9
    [8]Dingliang TANG (汤丁亮), Xianhui ZHANG (张先徽), Si-ze YANG (杨思泽). Plasma electrolytic liquefaction of cellulosic biomass[J]. Plasma Science and Technology, 2018, 20(4): 44002-044002. DOI: 10.1088/2058-6272/aa9563
    [9]JIN Shuo (金硕), RUAN Jiangjun (阮江军), DU Zhiye (杜志叶), ZHU Lin (朱琳), SHU Shengwen (舒胜文). Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine[J]. Plasma Science and Technology, 2016, 18(10): 998-1004. DOI: 10.1088/1009-0630/18/10/06
    [10]YANG Guang (杨光), QIAO Shujun (乔淑君), CHEN Pengfei (陈鹏飞), DING Yu (丁宇), TIAN Di (田地). Rock and Soil Classification Using PLS-DA and SVM Combined with a Laser-Induced Breakdown Spectroscopy Library[J]. Plasma Science and Technology, 2015, 17(8): 656-663. DOI: 10.1088/1009-0630/17/8/08
  • Cited by

    Periodical cited type(25)

    1. Wang, D., Xu, L., Gao, W. et al. Application of Semi-Supervised Learning Model to Coal Sample Classification. Applied Sciences (Switzerland), 2024, 14(4): 1606. DOI:10.3390/app14041606
    2. Sun, Y., Liu, L., Xiao, L. Application of Wavelet Threshold Denoising in LIBS Spectral Denoising. 2024. DOI:10.1109/EIT63098.2024.10762555
    3. Wu, L., Kim, S.K. Evaluating the economic and climate adaptation benefits of land conservation strategies in urban coastal regions of the U.S. and China. Climate Risk Management, 2024. DOI:10.1016/j.crm.2024.100632
    4. Dong, M., Cai, J., Liu, H. et al. A review of laser-induced breakdown spectroscopy and spontaneous emission techniques in monitoring thermal conversion of fuels. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106807
    5. Yang, L., Xiang, Y., Li, Y. et al. Identification and classification of recyclable waste using laser-induced breakdown spectroscopy technology. AIP Advances, 2023, 13(7): 075024. DOI:10.1063/5.0149329
    6. Xu, L., Shu, Q., Fu, H. et al. Estimation of Quercus Biomass in Shangri-La Based on GEDI Spaceborne Lidar Data. Forests, 2023, 14(5): 876. DOI:10.3390/f14050876
    7. Brunnbauer, L., Gajarska, Z., Lohninger, H. et al. A critical review of recent trends in sample classification using Laser-Induced Breakdown Spectroscopy (LIBS). TrAC - Trends in Analytical Chemistry, 2023. DOI:10.1016/j.trac.2022.116859
    8. Guan, C., Wu, T., Chen, J. et al. Detection of Carbon Content from Pulverized Coal Using LIBS Coupled with DSC-PLS Method. Chemosensors, 2022, 10(11): 490. DOI:10.3390/chemosensors10110490
    9. Zhang, Q., Liu, Y. Review of In-situ Online LIBS Detection in the Atmospheric Environment. Atomic Spectroscopy, 2022, 43(2): 174-185. DOI:10.46770/AS.2021.609
    10. Zhang, D., Zhang, H., Zhao, Y. et al. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: machine learning. Applied Spectroscopy Reviews, 2022, 57(2): 89-111. DOI:10.1080/05704928.2020.1843175
    11. Kim, S.K., Bennett, M.M., van Gevelt, T. et al. Urban agglomeration worsens spatial disparities in climate adaptation. Scientific Reports, 2021, 11(1): 8446. DOI:10.1038/s41598-021-87739-1
    12. Song, Y., Song, W., Yu, X. et al. Improvement of sample discrimination using laser-induced breakdown spectroscopy with multiple-setting spectra. Analytica Chimica Acta, 2021. DOI:10.1016/j.aca.2021.339053
    13. Liu, K., He, C., Zhu, C. et al. A review of laser-induced breakdown spectroscopy for coal analysis. TrAC - Trends in Analytical Chemistry, 2021. DOI:10.1016/j.trac.2021.116357
    14. Teng, G., Wang, Q., Cui, X. et al. Predictive data clustering of laser-induced breakdown spectroscopy for brain tumor analysis. Biomedical Optics Express, 2021, 12(7): 4438-4451. DOI:10.1364/BOE.431356
    15. Yang, Y., Zhang, L., Hao, X. et al. Classification of iron ore based on machine learning and laser induced breakdown spectroscopy | [机器学习结合激光诱导击穿光谱技术铁矿石分类方法]. Hongwai yu Jiguang Gongcheng/Infrared and Laser Engineering, 2021, 50(5): 20200490. DOI:10.3788/IRLA20200490
    16. Wang, C., Wang, J., Wang, J. et al. Classification of 13 original rock samples by laser induced breakdown spectroscopy. Laser Physics, 2021, 31(3): 035601. DOI:10.1088/1555-6611/abdfc8
    17. Jayaganthan, S., Babu, M.S., Vasa, N.J. et al. Classification of coal deposited epoxy micro-nanocomposites by adopting machine learning techniques to libs analysis. Journal of Physics Communications, 2021, 5(10): 105006. DOI:10.1088/2399-6528/ac2b5d
    18. Liu, X., Che, X., Li, K. et al. Geographical authenticity evaluation of Mentha haplocalyx by LIBS coupled with multivariate analyzes. Plasma Science and Technology, 2020, 22(7): 074006. DOI:10.1088/2058-6272/ab7eda
    19. Feng, Z., Zhang, D., Wang, B. et al. The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods. Plasma Science and Technology, 2020, 22(7): 074012. DOI:10.1088/2058-6272/ab84ed
    20. Dong, M., Wei, L., González, J.J. et al. Coal Discrimination Analysis Using Tandem Laser-Induced Breakdown Spectroscopy and Laser Ablation Inductively Coupled Plasma Time-of-Flight Mass Spectrometry. Analytical Chemistry, 2020, 92(10): 7003-7010. DOI:10.1021/acs.analchem.0c00188
    21. Yang, Y., Hao, X., Zhang, L. et al. Application of scikit and keras libraries for the classification of iron ore data acquired by laser-induced breakdown spectroscopy (LIBS). Sensors (Switzerland), 2020, 20(5): 1393. DOI:10.3390/s20051393
    22. Wang, Z., Hou, Z., Zhang, L. et al. Coal analysis. Laser-Induced Breakdown Spectroscopy, Second Edition, 2020. DOI:10.1016/B978-0-12-818829-3.00021-6
    23. Xia, W., Zeng, J., Long, Z. et al. Study on fracture fault diagnosis online method of bogie of maglev train. 2019. DOI:10.1109/CAC48633.2019.8996297
    24. Wang, Z., Wang, S., Kong, D. et al. Methane detection based on improved chicken algorithm optimization support vector machine. Applied Sciences (Switzerland), 2019, 9(9): 1761. DOI:10.3390/app9091761
    25. Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873

    Other cited types(0)

Catalog

    Article views (215) PDF downloads (696) Cited by(25)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return