Advanced Search+
Nimisha SRIVASTAVA, Chuji WANG. Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115401. DOI: 10.1088/2058-6272/ab3248
Citation: Nimisha SRIVASTAVA, Chuji WANG. Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet[J]. Plasma Science and Technology, 2019, 21(11): 115401. DOI: 10.1088/2058-6272/ab3248

Effect of N2 and O2 on OH radical production in an atmospheric helium microwave plasma jet

Funds: This work is supported by the National Science Foundation through the grant CBET-1066486.
More Information
  • Received Date: May 23, 2019
  • Revised Date: July 09, 2019
  • Accepted Date: July 14, 2019
  • UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X) (0–0) band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source. The effect of the addition of molecular gases N2 and O2 to He plasma jets on OH generation was studied. Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species. Stark broadening of the hydrogen Balmer emission line (Hβ) was used to estimate the electron density ne in the jets. For both He/N2 and He/O2 jets, ne was estimated to be on the order of 1015 cm−3. The effects of plasma power and gas flow rate were also studied. With increase in N2 and O2 flow rates, ne tended to decrease. Gas temperature in the He/O2 plasma jets was elevated compared to the temperatures in the pure He and He/N2 plasma jets. The highest OH densities in the He/N2 and He/O2 plasma jets were determined to be 1.0× 1016 molecules/cm3 at x=4 mm (from the jet orifice) and 1.8×1016 molecules/cm3 at x=3 mm, respectively. Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions. The presence of strong emissions of the N+2 bands in both He/N2 and He/O2 plasma jets, as against the absence of the N+2 emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N+2 in these He plasma jets.
  • [1]
    Esplugas S, Yue P L and Pervez M I 1994 Water Res. 28 1323
    [2]
    Masten S J and Davies S H R 1994 Environ. Sci. Technol.28 180
    [3]
    Wang C et al 2004 Appl. Spectrosc. 58 734
    [4]
    Wang C 2013 Cavity ringdown spectroscopy of plasma species ed P K Chu and X P Lu Low Temperature Plasma Technology: Methods and Applications (Boca Raton, FL:CRC Press)
    [5]
    Wang C et al 2009 Plasma Sources Sci. Technol. 18 025030
    [6]
    Wang C, Srivastava N and Dibble T S 2009 Appl. Phys. Lett.95 051501
    [7]
    Zhao G et al 2010 Plasma Sci. Technol. 12 166
    [8]
    Srivastava N, Wang C and Dibble T S 2009 Eur. Phys. J. D 54 77
    [9]
    Fuh C A et al 2016 J. Appl. Phys. 120 163303
    [10]
    Attri P et al 2015 Sci. Rep. 5 9332
    [11]
    Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (New York: Wiley)
    [12]
    Jeong J Y et al 1998 Plasma Sources Sci. Technol. 7 282
    [13]
    Starikovskaia S M 2006 J. Phys. D: Appl. Phys. 39 R265
    [14]
    Lu X et al 2009 Appl. Phys. Lett. 95 181501
    [15]
    Lu X P et al 2008 Appl. Phys. Lett. 92 151504
    [16]
    Kong M G et al 2009 New J. Phys. 11 115012
    [17]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [18]
    Laroussi M, Lu X and Keidar M 2017 J. Appl. Phys. 122 020901
    [19]
    Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
    [20]
    Graves D B 2017 IEEE Trans. Radiat. Plasma Med. Sci. 1 281
    [21]
    Ono R and Oda T 2001 IEEE Trans. Ind. Appl. 37 709
    [22]
    Ono R and Oda T 2003 J. Appl. Phys. 93 5876
    [23]
    O’Keefe A and Deacon D A G 1988 Rev. Sci. Instrum. 59 2544
    [24]
    Wang C and Wu W 2014 Combust Flame. 161 2073
    [25]
    Liu D X et al 2010 Plasma Source Sci. Technol. 19 025018
    [26]
    Walsh J L et al 2010 J. Phys. D: Appl. Phys. 43 032001
    [27]
    Martens T et al 2008 Appl. Phys. Lett. 92 041504
    [28]
    Sasaki K, Ishigame H and Nishiyama S 2015 Eur. Phys. J.Appl. Phys. 71 20807
    [29]
    Yue Y, Pei X and Lu X 2016 J. Appl. Phys. 119 033301
    [30]
    Ono R et al 2016 J. Phys. D: Appl. Phys. 49 305401
    [31]
    Yue Y F et al 2018 Plasma Sources Sci. Technol. 27 064001
    [32]
    Wang Z et al 2019 J. Phys. D: Appl. Phys. 52 105203
    [33]
    Srivastava N and Wang C 2011 IEEE Trans. Plasma Sci.39 918
    [34]
    Srivastava N and Wang C 2011 J. Appl. Phys. 110 053304
    [35]
    Wang C and Srivastava N 2010 Eur. Phys. J. D 60 465
    [36]
    Olenici-Craciunescu S B et al 2011 Spectrochim. Acta Part B 66 268
    [37]
    Xiong Q et al 2009 Phys. Plasmas 16 043505
    [38]
    Bruggeman P and Schram D C 2010 Plasma Sources Sci.Technol. 19 045025
    [39]
    Ono R, Teramoto Y and Oda T 2010 Plasma Sources Sci.Technol. 19 015009
    [40]
    Griem H 1974 Spectral Line Broadening by Plasmas (New York: Academic)
    [41]
    Gigosos M A, González M Á and Cardeñoso V 2003 Spectrochim. Acta Part B 58 1489
    [42]
    Vidal C R, Cooper J and Smith E W 1973 Astrophys. J. Suppl.25 37
    [43]
    Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
    [44]
    Bruggeman P et al 2009 Plasma Sources Sci. Technol. 18 025017
    [45]
    Balcon N, Aanesland A and Boswell R 2007 Plasma Sources Sci. Technol. 16 217
    [46]
    Liu D X et al 2011 Appl. Phys. Lett. 98 221501
    [47]
    Goldman A and Gillis J R 1981 J. Quant. Spectrosc. Radia.Transf. 25 111
    [48]
    Harb T, Kedzierski W and McConkey J W 2001 J. Chem.Phys. 115 5507
    [49]
    Herron J T and Green D S 2001 Plasma Chem. Plasma Proc.21 459
  • Related Articles

    [1]Tianbao MA, Yauheni KALENKOVICH, Valeriy ROKACH, Anatoly OSIPOV. Generation of low-temperature plasma by pulse-width modulated signals and monitoring of the interaction thereof with the surface of objects[J]. Plasma Science and Technology, 2025, 27(1): 015403. DOI: 10.1088/2058-6272/ad8a38
    [2]Jiachen TONG, Haiying LI, Bin XU, Songyang WU, Lu BAI. Excitation and power spectrum analysis of electromagnetic radiation for the plasma wake of reentry vehicles[J]. Plasma Science and Technology, 2023, 25(5): 055301. DOI: 10.1088/2058-6272/aca7ad
    [3]Yaocong XIE, Xiaoping LI, Fangfang SHEN, Bowen BAI, Yanming LIU, Xuyang CHEN, Lei SHI. Analysis of inverse synthetic aperture radar imaging in the presence of time-varying plasma sheath[J]. Plasma Science and Technology, 2022, 24(3): 035002. DOI: 10.1088/2058-6272/ac1d98
    [4]LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
    [5]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [6]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [7]SHI Lei (石磊), ZHAO Lei (赵蕾), YAO Bo (姚博), LI Xiaoping (李小平). Telemetry Channel Capacity Assessment for Reentry Vehicles in Plasma Sheath Environment[J]. Plasma Science and Technology, 2015, 17(12): 1006-1012. DOI: 10.1088/1009-0630/17/12/05
    [8]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [9]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [10]WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02

Catalog

    Article views (287) PDF downloads (315) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return