Advanced Search+
Chengyan REN (任成燕), Chuansheng ZHANG (张传升), Duo HU (胡多), Cheng ZHANG (章程), Fei KONG (孔飞), Tao SHAO (邵涛), Ping YAN (严萍). Trap distribution of polymeric materials and its effect on surface flashover in vacuum[J]. Plasma Science and Technology, 2020, 22(4): 44002-044002. DOI: 10.1088/2058-6272/ab580d
Citation: Chengyan REN (任成燕), Chuansheng ZHANG (张传升), Duo HU (胡多), Cheng ZHANG (章程), Fei KONG (孔飞), Tao SHAO (邵涛), Ping YAN (严萍). Trap distribution of polymeric materials and its effect on surface flashover in vacuum[J]. Plasma Science and Technology, 2020, 22(4): 44002-044002. DOI: 10.1088/2058-6272/ab580d

Trap distribution of polymeric materials and its effect on surface flashover in vacuum

Funds: This work is supported by National Natural Science Foundation of China (Nos. 51977202, U1830135, 51807189) and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (No. YJKYYQ20170004).
More Information
  • Received Date: August 27, 2019
  • Revised Date: November 13, 2019
  • Accepted Date: November 13, 2019
  • The surface trap parameter can significantly affect the development of surface flashover in vacuum, but the effective mode and mechanism are not very clear yet. The trap parameters of three polymeric materials were tested and calculated by means of isothermal surface potential decay. The flashover experiment was developed under different applied voltages. The results show a positive correlation between the withstand voltage and the deep trap, i.e., the deeper trap energy level is, the higher flashover voltage is. The dynamics process of charge trapping and detrapping was analyzed based on the charge transport model in dielectrics with a single trap level and two discrete trap levels. The time of charge trapping was compared with that of the discharge development. The results show that the charge trapping time is longer than the flashover development time. The way to influence flashover for a trap is not to decrease the secondary electrons in single discharge development, but to change the electric field distribution on the dielectric surface by charge capture.
  • [1]
    Miller H C 2015 IEEE Trans. Dielectr. Electr. Insul. 22 3641
    [2]
    Li C R et al 2006 IEEE Trans. Dielectr. Electr. Insul. 13 79
    [3]
    Zhao W B et al 2007 IEEE Trans. Dielectr. Electr. Insul.14 170
    [4]
    Li S T et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 3215
    [5]
    Zheng N et al 2011 Plasma Sci. Technol. 13 656
    [6]
    Blaise G and Le Gressus C 1991 J. Appl. Phys. 69 6334
    [7]
    Anderson R A and Brainard J P 1980 J. Appl. Phys. 51 1414
    [8]
    Yu S H et al 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1567
    [9]
    Li S T et al 2019 Sci. Rep. 9 5464
    [10]
    Zhang G J et al 2018 IEEE Trans. Dielectr. Electr. Insul.25 2321
    [11]
    Shao T et al 2014 Appl. Phys. Lett. 105 071607
    [12]
    Du B X, Huang P H and Xing Y Q 2017 IET Sci. Meas.Technol. 11 18
    [13]
    Li J et al 2018 Polymers 10 500
    [14]
    Sun Z L et al 2015 Chin. J. Vac. Sci. Technol. 35 1437 (in Chinese)
    [15]
    Li C Y et al 2016 J. Phys. D: Appl. Phys. 49 445304
    [16]
    Li C Y et al 2017 Sci. Rep. 7 3271
    [17]
    Zhou R D et al 2019 J. Phys. D: Appl. Phys. 52 375304
    [18]
    Sun G Y et al 2019 Plasma Sources Sci. Technol. 28 055001
    [19]
    Zhang C et al 2019 Surf. Coat. Technol. 362 1
    [20]
    Shao T et al 2018 High Volt. 3 14
    [21]
    Shen W W et al 2013 J. Appl. Phys. 113 083706
    [22]
    Li J Y et al 2015 IEEE Trans. Dielectr. Electr. Insul. 22 1723
    [23]
    Hu D et al 2019 IEEE Trans. Dielectr. Electr. Insul. 26 171
    [24]
    Hu D et al 2019 Trans. China Electrotech. Soc. 34 3512 (inChinese)
    [25]
    Xue J Y et al 2018 J. Appl. Phys. 124 083302
    [26]
    Min D M 2013 Investigation into charge trapping transportproperties and mechanisms in polymeric insulating materialsPhD Thesis Xi’an Jiaotong University (in Chinese)
    [27]
    Ren C Y et al 2019 IEEE Trans. Dielectr. Electr. Insul. 26 593
    [28]
    Li M P et al 2014 Plasma Sci. Technol. 16 856
    [29]
    Kojima H et al 2011 IEEE Trans. Dielectr. Electr. Insul. 18 918
    [30]
    Sun X L et al 2018 AIP Adv. 8 075309
    [31]
    Sun G Y, Song B P and Zhang G J 2018 Appl. Phys. Lett. 113 011603
    [32]
    Liu Y Q et al 2019 Plasma Sci. Technol. 21 055501
  • Related Articles

    [1]Tianbao MA, Yauheni KALENKOVICH, Valeriy ROKACH, Anatoly OSIPOV. Generation of low-temperature plasma by pulse-width modulated signals and monitoring of the interaction thereof with the surface of objects[J]. Plasma Science and Technology, 2025, 27(1): 015403. DOI: 10.1088/2058-6272/ad8a38
    [2]Jiachen TONG, Haiying LI, Bin XU, Songyang WU, Lu BAI. Excitation and power spectrum analysis of electromagnetic radiation for the plasma wake of reentry vehicles[J]. Plasma Science and Technology, 2023, 25(5): 055301. DOI: 10.1088/2058-6272/aca7ad
    [3]Yaocong XIE, Xiaoping LI, Fangfang SHEN, Bowen BAI, Yanming LIU, Xuyang CHEN, Lei SHI. Analysis of inverse synthetic aperture radar imaging in the presence of time-varying plasma sheath[J]. Plasma Science and Technology, 2022, 24(3): 035002. DOI: 10.1088/2058-6272/ac1d98
    [4]LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
    [5]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [6]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [7]SHI Lei (石磊), ZHAO Lei (赵蕾), YAO Bo (姚博), LI Xiaoping (李小平). Telemetry Channel Capacity Assessment for Reentry Vehicles in Plasma Sheath Environment[J]. Plasma Science and Technology, 2015, 17(12): 1006-1012. DOI: 10.1088/1009-0630/17/12/05
    [8]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [9]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [10]WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02

Catalog

    Article views (222) PDF downloads (108) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return