Advanced Search+
Hanghang WANG (王行行), Liyan ZHANG (张丽艳), Wenqi LU (陆文琪), Jun XU (徐军). Continuous compositional spread investigation of SiC-based thin films prepared by MW-ECR plasma enhanced magnetron co-sputtering[J]. Plasma Science and Technology, 2020, 22(3): 34010-034010. DOI: 10.1088/2058-6272/ab618a
Citation: Hanghang WANG (王行行), Liyan ZHANG (张丽艳), Wenqi LU (陆文琪), Jun XU (徐军). Continuous compositional spread investigation of SiC-based thin films prepared by MW-ECR plasma enhanced magnetron co-sputtering[J]. Plasma Science and Technology, 2020, 22(3): 34010-034010. DOI: 10.1088/2058-6272/ab618a

Continuous compositional spread investigation of SiC-based thin films prepared by MW-ECR plasma enhanced magnetron co-sputtering

More Information
  • Received Date: September 09, 2019
  • Revised Date: December 11, 2019
  • Accepted Date: December 12, 2019
  • A kind of combinatorial material methodology, also known as continuous compositional spread method, was employed to investigate the relationship between the optical band gap and composition of SiC thin films. A wide range of SixCy thin films with different carbon contents have been successfully deposited in a single deposition by carefully arranging the sample position on the substrate holder. The films were characterized by surface profiler, x-ray photoelectron spectroscopy, ultraviolet–visible spectroscopy, fourier transform infrared spectroscopy and Raman spectroscopy. The carbon content y increases linearly from 0.28 to 0.72 while the sample position changed from 85 to 175 mm, the optical band gap changed between 1.27 and 1.99 eV, the maximum value corresponded to the stoichiometric SiC sample at the position of 130 mm, which has the highest Si−C bond density of 11.7 × 1022 cm–3. The C poor and C rich SixCy samples with y value less and larger than 0.5 were obtained while samples deviated from the position 130 mm, the optical band gap decreased with the Si−C bond density.
  • [1]
    Senesky D G et al 2009 IEEE Sens. J. 9 1472
    [2]
    La Via F et al 2018 Mater. Sci. Semicond. Process. 78 57
    [3]
    Hornberger J et al 2014 Silicon-carbide (SiC) semiconductor power electronics for extreme high-temperature environments Proc. 2004 IEEE Aerospace Conf. Proc.(Piscataway, NJ: IEEE)
    [4]
    Werner M R and Fahrner WR 2001 IEEE Trans. Ind. Electron.48 249
    [5]
    Majid A 2018 Ceram. Int. 44 1277
    [6]
    Güneş İ and Sel K 2017 Thin Solid Films 636 85
    [7]
    Maruyama T and Mitani S 2003 J. Non-Cryst. Solids 319 219
    [8]
    El Khakani M A et al 1994 J. Mater. Res. 9 96
    [9]
    Serre C et al 1996 J. Appl. Phys. 79 6907
    [10]
    Tavsanoglu T et al 2019 Thin Solid Films 674 1
    [11]
    Costa A K et al 2000 Thin Solid Films 377-378 243
    [12]
    He Y S et al 2016 Appl. Surf. Sci. 363 477
    [13]
    Joung Y H et al 2015 Thin Solid Films 587 160
    [14]
    Kulikovsky V et al 2008 Surf. Coat. Technol. 202 1738
    [15]
    Cheng Y et al 2017 Opt. Mater. 73 723
    [16]
    Imer A G, Yildiz I and Turan R 2010 Physica E 42 2358
    [17]
    El Khalfi A I et al 2014 Spectrosc. Lett. 47 392
    [18]
    van Dover R B, Schneemeyer L F and Fleming R M 1998 Nature 392 162
    [19]
    Koinuma H and Takeuchi I 2004 Nat. Mater. 3 429
    [20]
    Xu J et al 2001 Thin Solid Films 390 107
    [21]
    Russek S E et al 2001 IEEE Trans. Magnet. 37 2156
    [22]
    Fujimoto T et al 1999 Rev. Sci. Instrum. 70 4362
    [23]
    Ferrari A C, Rodil S E and Robertson J 2003 Phys. Rev. B 67 155306
    [24]
    Ricciardi C et al 2006 J. Non-Cryst. Solids 352 1380
    [25]
    Zhang L M et al 2018 J. Nucl. Mater. 505 249
    [26]
    Medeiros H S et al 2011 Surf. Coat. Technol. 206 1787
    [27]
    Ferrari A C and Robertson J 2004 Phil. Trans. R. Soc. A 362 2477
    [28]
    Jiang L H et al 2017 Thin Solid Films 622 71
    [29]
    Li M M et al 2018 J. Alloys Compd. 753 320
  • Related Articles

    [1]You HE, Yeong-Min LIM, Jun-Ho LEE, Ju-Ho KIM, Moo-Young LEE, Chin-Wook CHUNG. Effect of parallel resonance on the electron energy distribution function in a 60 MHz capacitively coupled plasma[J]. Plasma Science and Technology, 2023, 25(4): 045401. DOI: 10.1088/2058-6272/ac9b9f
    [2]Min ZHU (朱敏), Chao YE (叶超), Xiangying WANG (王响英), Amin JIANG (蒋阿敏), Su ZHANG (张苏). Effect of radio-frequency substrate bias on ion properties and sputtering behavior of 2 MHz magnetron sputtering[J]. Plasma Science and Technology, 2019, 21(1): 15507-015507. DOI: 10.1088/2058-6272/aae7dd
    [3]Liang SONG (宋亮), Xianping WANG (王先平), Le WANG (王乐), Ying ZHANG (张营), Wang LIU (刘旺), Weibing JIANG (蒋卫斌), Tao ZHANG (张涛), Qianfeng FANG (方前锋), Changsong LIU (刘长松). Fabrication and characterization of He-charged ODS-FeCrNi films deposited by a radio-frequency plasma magnetron sputtering technique[J]. Plasma Science and Technology, 2017, 19(4): 45502-045502. DOI: 10.1088/2058-6272/aa57f0
    [4]JIN Yizhou (金逸舟), YANG Juan (杨涓), TANG Mingjie (汤明杰), LUO Litao (罗立涛), FENG Bingbing (冯冰冰). Diagnosing the Fine Structure of Electron Energy Within the ECRIT Ion Source[J]. Plasma Science and Technology, 2016, 18(7): 744-750. DOI: 10.1088/1009-0630/18/7/08
    [5]LIU Yi (刘毅), YE Chao (叶超), HE Haijie (何海杰), WANG Xiangying (王响英). Effect of Frequency and Power of Bias Applied to Substrate on Plasma Property of Very-High-Frequency Magnetron Sputtering[J]. Plasma Science and Technology, 2015, 17(7): 583-588. DOI: 10.1088/1009-0630/17/7/10
    [6]GAO Huanzhong (高欢忠), HE Long (何龙), HE Zhijiang (何志江), LI Zebin (李泽斌), et al.. Work Function Enhancement of Indium Tin Oxide via Oxygen Plasma Immersion Ion Implantation[J]. Plasma Science and Technology, 2013, 15(8): 791-793. DOI: 10.1088/1009-0630/15/8/14
    [7]Umm-i-KALSOOM, R. AHMAD, Nisar ALI, I. A. KHAN, Sehrish SALEEM, Uzma IKHLAQ, et al. Effect of Power and Nitrogen Content on the Deposition of CrN Films by Using Pulsed DC Magnetron Sputtering Plasma[J]. Plasma Science and Technology, 2013, 15(7): 666-672. DOI: 10.1088/1009-0630/15/7/12
    [8]LU Wenqi (陆文琪), JIANG Xiangzhan (蒋相站), LIU Yongxin (刘永新), YANG Shuo (杨烁), et al. Improved Double-Probe Technique for Spatially Resolved Diagnosis of Dual-Frequency Capacitive Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 511-515. DOI: 10.1088/1009-0630/15/6/05
    [9]PANG Jianhua (庞见华), LU Wenqi (陆文琪), XIN Yu (辛煜), WANG Hanghang (王行行), HE Jia (贺佳), XU Jun (徐军). Plasma Diagnosis for Microwave ECR Plasma Enhanced Sputtering Deposition of DLC Films[J]. Plasma Science and Technology, 2012, 14(2): 172-176. DOI: 10.1088/1009-0630/14/2/17
    [10]RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555.
  • Cited by

    Periodical cited type(20)

    1. Wang, L., Zhao, H., Han, Z. et al. Numerical simulation of He atmospheric pressure plasma jet impinging on the tilted dielectric surface. Journal of Applied Physics, 2024, 136(11): 113302. DOI:10.1063/5.0232639
    2. Yang, C., Geng, Y., Wang, J. EFFECT OF AIR IMPURITIES ON THE CHARACTERISTICS OF HELIUM DISCHARGE AT HIGH TEMPERATURE AND HIGH PRESSURE. 2024. DOI:10.1115/ICONE31-135193
    3. Fang, Z., Pan, Y.-Q., Dai, D. et al. Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation | [基于源项解耦的物理信息神经网络方法及其在放电等离子体模拟中的应用]. Wuli Xuebao/Acta Physica Sinica, 2024, 73(14): 145201. DOI:10.7498/aps.73.20240343
    4. Yang, D., Chen, J., Duan, Z. et al. Simulation analysis on microscopic discharge characteristics of the bipolar corona of a floating conductor. Plasma Science and Technology, 2023, 25(8): 085402. DOI:10.1088/2058-6272/acc16e
    5. Liu, K., Fang, Z., Dai, D. Numerical study on uniformity of atmospheric helium gas dielectric barrier discharge on non-smooth surface regulated by sinusoidal clipping voltage | [正弦削波电压调控大气压氦气非平滑表面介质阻挡放电均匀性的仿真研究]. Wuli Xuebao/Acta Physica Sinica, 2023, 72(13): 135201. DOI:10.7498/aps.72.20230385
    6. Ning, W., Li, R., Shen, X. et al. Simulation of the Discharges in Millimetre Gap Driven by Radio-frequency and Kilohertz AC Voltages | [射 频 和 千 赫 兹 驱 动 的 毫 米 间 隙 放 电 的 仿 真 研 究]. Gongcheng Kexue Yu Jishu/Advanced Engineering Sciences, 2023, 55(4): 38-46. DOI:10.15961/j.jsuese.202200996
    7. Huo, W., Lin, J., Yu, T. et al. Numerical studies on the influences of gas temperature on atmospheric-pressure helium dielectric barrier discharge characteristics. Plasma Science and Technology, 2023, 25(5): 055402. DOI:10.1088/2058-6272/aca9a7
    8. Yang, C., Geng, Y., Wang, J. Influence of nitrogen impurities on the characteristics of helium discharge at high pressure. Annals of Nuclear Energy, 2022. DOI:10.1016/j.anucene.2022.109024
    9. Liu, F., Zhuang, Y., Zhao, Y. et al. Effects of O2addition on the plasma uniformity and reactivity of Ar DBD excited by ns pulsed and AC power supplies. Plasma Science and Technology, 2022, 24(5): 054004. DOI:10.1088/2058-6272/ac41c1
    10. Wang, S., Song, P., Pei, H. et al. Numerical Simulation and Experimental Study of Ar/CH4 Coaxial DBD Discharge Characteristics. Advances in Transdisciplinary Engineering, 2022. DOI:10.3233/ATDE220025
    11. Luo, B., Wang, J., Dai, D. et al. Partial discharge simulation of air gap defects in oil-paper insulation paperboard of converter transformer under different ratios of ac–dc combined voltage. Energies, 2021, 14(21): 6995. DOI:10.3390/en14216995
    12. Zhao, L., Ji, Y., Shang, H. et al. Propagation Mechanism of a Positive DC Driven Atmospheric Pressure Helium Plasma Jet: Influences of He-air Mixing Layer | [正极性直流驱动大气压氦气等离子体射流的传播机制: 氦气-空气混合层的影响]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2021, 41(17): 6090-6099. DOI:10.13334/j.0258-8013.pcsee.202583
    13. Yang, C.-P., Geng, Y.-N., Wang, J. et al. Breakdown voltage of high pressure helium parallel plates and effect of field emission | [高气压氦气平行极板击穿电压及场致发射的影响]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(13): 135102. DOI:10.7498/aps.70.20210086
    14. Wang, Q., Zhou, X., Dai, D. et al. Nonlinear feature in the spatial uniformity of an atmospheric helium dielectric barrier discharge with the inter-dielectric gap width enlarged. Plasma Sources Science and Technology, 2021, 30(5): 05LT01. DOI:10.1088/1361-6595/abf75e
    15. Wang, Q., Dai, D., Ning, W. et al. Atmospheric dielectric barrier discharge containing helium-air mixtures: The effect of dry air impurities on the spatial discharge behavior. Journal of Physics D: Applied Physics, 2021, 54(11): 115203. DOI:10.1088/1361-6463/abcdd1
    16. LIU, Y., WANG, S., ZHOU, R. et al. Development of a battery-operated floatingelectrode dielectric barrier discharge plasma device and its characteristics. Plasma Science and Technology, 2021, 23(6): 064008. DOI:10.1088/2058-6272/abed2e
    17. Huang, Z., Zhang, Y., Dai, D. et al. Controlling the number of discharge current pulses in an atmospheric dielectric barrier discharge by voltage waveform tailoring. AIP Advances, 2021, 11(1): 015203. DOI:10.1063/5.0033571
    18. Wang, Q., Ning, W., Dai, D. et al. How does the moderate wavy surface affect the discharge behavior in an atmospheric helium dielectric barrier discharge model?. Plasma Processes and Polymers, 2020, 17(2): 1900182. DOI:10.1002/ppap.201900182
    19. Luo, L., Huang, Z., Wang, Q. et al. Influence of oxygen on the multiple-current-pulse behavior in an atmospheric homogeneous helium dielectric barrier discharge with air impurities. IEEE Access, 2020. DOI:10.1109/ACCESS.2020.2964653
    20. Liu, F., Guo, X., Zhou, Z. et al. Numerical simulations of the effects of the level of nitrogen impurities in atmospheric helium Townsend discharge. Physics of Plasmas, 2019, 26(12): 123502. DOI:10.1063/1.5125294

    Other cited types(0)

Catalog

    Article views (117) PDF downloads (57) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return