Advanced Search+
Yulei WANG (王雨雷), Feng YUAN (袁丰), Jian LIU (刘健). A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis[J]. Plasma Science and Technology, 2020, 22(6): 65001-065001. DOI: 10.1088/2058-6272/ab770e
Citation: Yulei WANG (王雨雷), Feng YUAN (袁丰), Jian LIU (刘健). A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis[J]. Plasma Science and Technology, 2020, 22(6): 65001-065001. DOI: 10.1088/2058-6272/ab770e

A relativistic canonical symplectic particle-in-cell method for energetic plasma analysis

Funds: This research is supported by National Natural Science Foundation of China (Nos. 11805203, 11775222, 11575185), the National Magnetic Confinement Fusion Energy Research Project of China (2015GB111003), and the Key Research Program of Frontier Sciences CAS (QYZDB-SSW-SYS004).
More Information
  • Received Date: December 23, 2019
  • Revised Date: February 15, 2020
  • Accepted Date: February 16, 2020
  • A relativistic canonical symplectic particle-in-cell (RCSPIC) method for simulating energetic plasma processes is established. By use of the Hamiltonian for the relativistic Vlasov–Maxwell system, we obtain a discrete relativistic canonical Hamiltonian dynamical system, based on which the RCSPIC method is constructed by applying the symplectic temporal discrete method. Through a 106-step numerical test, the RCSPIC method is proven to possess long-term energy stability. The ability to calculate energetic plasma processes is shown by simulations of the reflection processes of a high-energy laser (1×1020Wcm−2) on the plasma edge.
  • [1]
    Qin H et al 2015 Nucl. Fusion 56 014001
    [2]
    Jia Q et al 2017 Phys. Plasmas 24 093103
    [3]
    Wilson F et al 2016 Phys. Plasmas 23 032302
    [4]
    Birdsall C et al 1985 Plasma Physics via Computer Simulation (New York: McGraw-Hill)
    [5]
    Hairer E et al 2002 Geometric Numerical Integration:Structure-preserving algorithms for Ordinary Differential equations (New York: Springer) (https://doi.org/10.1007/978-3-662-05018-7)
    [6]
    Xiao J Y et al 2013 Phys. Plasmas 20 102517
    [7]
    Xiao J Y et al 2015 Phys. Plasmas 22 092305
    [8]
    Xiao J Y et al 2017 Phys. Plasmas 24 062112
    [9]
    He Y et al 2015 Phys. Plasmas 22 124503
    [10]
    Kraus M et al 2015 Physica D 310 37
    [11]
    Kraus M et al 2013 (arXiv:1307.5665)
    [12]
    McLachlan R et al 2006 J. Phys. A: Math. Gen. 39 5251
    [13]
    Candy J et al 1991 J. Comput. Phys. 92 230
    [14]
    Qin H et al 2008 Phys. Rev. Lett. 100 035006
    [15]
    Qin H et al 2013 Phys. Plasmas 20 084503
    [16]
    Guan X Y et al 2010 Phys. Plasmas 17 092502
    [17]
    Zhang R L et al 2015 Phys. Plasmas 22 044501
    [18]
    Zhang R L et al 2014 Phys. Plasmas 21 032504
    [19]
    He Y et al 2016 J. Comput. Phys. 305 172
    [20]
    He Y et al 2015 J. Comput. Phys. 281 135
    [21]
    Channell P J et al 1990 Nonlinearity 3 231
    [22]
    Channell P J et al 2014 Comput. Sci. Discovery 7 015001
    [23]
    He Y et al 2016 Phys. Lett. A 381 568
    [24]
    Squire J et al 2012 Phys. Plasmas 19 084501
    [25]
    Ellison C L et al 2015 Plasma Phys. Controlled Fusion 57 054007
    [26]
    Li J X et al 2011 Phys. Plasmas 18 052902
    [27]
    McLachlan R I et al 1992 Nonlinearity 5 541
    [28]
    Shadwick B A et al 2014 Phys. Plasmas 21 055708
    [29]
    Zhang R L et al 2016 Phys. Rev. E 94 013205
    [30]
    Zhu B B et al 2016 J. Comput. Phys. 322 387
    [31]
    Zhang R L et al 2018 Phys. Plasmas 25 022117
    [32]
    Morrison P J et al 1982 AIP Conf. Proc. 88 13
    [33]
    Morrison P J et al 1980 Phys. Lett. A 80 383
    [34]
    Marsden J E et al 1982 Physica D 4 394
    [35]
    Kruer W 1988 The Physics of Laser Plasma Interactions(Reading, MA: Addison-Wesley)
    [36]
    Wang Y L et al 2016 Phys. Plasmas 23 062505
    [37]
    Van A J A et al 1959 Nature 183 430
    [38]
    Xiao J Y et al 2018 Plasma Sci. Technol. 20 110501
    [39]
    Koen E J et al 2012 Phys. Plasmas 19 042101
  • Related Articles

    [1]Jianyuan XIAO (肖建元), Hong QIN (秦宏). Explicit structure-preserving geometric particle-in-cell algorithm in curvilinear orthogonal coordinate systems and its applications to whole-device 6D kinetic simulations of tokamak physics[J]. Plasma Science and Technology, 2021, 23(5): 55102-055102. DOI: 10.1088/2058-6272/abf125
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2
    [4]X T DING (丁玄同), W CHEN (陈伟). Review of the experiments for energetic particle physics on HL-2A[J]. Plasma Science and Technology, 2018, 20(9): 94008-094008. DOI: 10.1088/2058-6272/aad27a
    [5]Weili FAN (范伟丽), Zhengming SHENG (盛政明), Fucheng LIU (刘富成). Particle-in-cell/Monte Carlo simulation of filamentary barrier discharges[J]. Plasma Science and Technology, 2017, 19(11): 115401. DOI: 10.1088/2058-6272/aa808c
    [6]ZHANG Ya (张雅), LI Lian (李莲), JIANG Wei (姜巍), YI Lin (易林). Numerical Approach of Interactions of Proton Beams and Dense Plasmas with Quantum-Hydrodynamic/Particle-in-Cell Model[J]. Plasma Science and Technology, 2016, 18(7): 720-726. DOI: 10.1088/1009-0630/18/7/04
    [7]GUO Jun (郭俊), YANG Qinglei (杨清雷), ZHU Guoquan (朱国全), and LI Bo (李波). A Particle-in-Cell Simulation of Double Layers and Ion-Acoustic Waves[J]. Plasma Science and Technology, 2013, 15(11): 1088-1092. DOI: 10.1088/1009-0630/15/11/02
    [8]WANG Jun (王军), HU Chundong (胡纯栋), HU Shuanghui (胡双辉), WU Bin (吴斌), et al.. Alfvén Instabilities Excited by Energetic Particles in a Parameter Regime Similar to EAST Operation[J]. Plasma Science and Technology, 2013, 15(8): 750-754. DOI: 10.1088/1009-0630/15/8/06
    [9]WU Mingyu (吴明雨), LU Quanming (陆全明), ZHU Jie (朱洁), WANG Peiran (王沛然), WANG Shui (王水). Electromagnetic Particle-in-Cell Simulations of Electron Holes Formed During the Electron Two-Stream Instability[J]. Plasma Science and Technology, 2013, 15(1): 17-24. DOI: 10.1088/1009-0630/15/1/04
    [10]XIA Xiongping (夏雄平), YI Lin (易林). Relativistic Filamentation of Intense Laser Beam in Inhomogeneous Plasma[J]. Plasma Science and Technology, 2012, 14(12): 1054-1058. DOI: 10.1088/1009-0630/14/12/04
  • Cited by

    Periodical cited type(1)

    1. Zhu, B., Liu, J., Zhang, J. et al. Adaptive energy-preserving algorithms for guiding center system. Plasma Science and Technology, 2023, 25(4): 045102. DOI:10.1088/2058-6272/ac9c4a

    Other cited types(0)

Catalog

    Article views (121) PDF downloads (85) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return