Citation: | Junfeng SHAO (邵俊峰), Jin GUO (郭劲), Qiuyun WANG (王秋云), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of target temperature on femtosecond laser-ablated brass plasma spectroscopy[J]. Plasma Science and Technology, 2020, 22(7): 74001-074001. DOI: 10.1088/2058-6272/ab7901 |
[1] |
Hahn D W and Lunden M M 2000 Aerosol Sci. Technol. 33 30
|
[2] |
Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol.17 617
|
[3] |
Wang Z et al 2014 Front. Phys. 9 419
|
[4] |
Wang Z Z et al 2016 Front. Phys. 11 114213
|
[5] |
Wang Q Q et al 2012 Front. Phys. 7 701
|
[6] |
Fu Y Y et al 2019 Plasma Sci. Technol. 21 030101
|
[7] |
Nicolas G, Mateo M P and Piñon V 2007 J. Anal. At.Spectrom. 22 1244
|
[8] |
Winefordner J D et al 2004 J. Anal. At. Spectrom. 19 1061
|
[9] |
Barbini R et al 2002 Spectrochim. Acta B 57 1203
|
[10] |
Haider A F M Y and Khan Z H 2012 Opt. Laser Technol.44 1654
|
[11] |
Sancey L et al 2016 Sci. Rep. 6 24377
|
[12] |
Harilal S S et al 2018 Appl. Phys. Rev. 5 021301
|
[13] |
Zhou W D et al 2013 J. Anal. At. Spectrom. 28 702
|
[14] |
Zhou W D et al 2010 Opt. Express 18 2573
|
[15] |
Kexue L I et al 2010 Spectrochim. Acta B 65 420
|
[16] |
Wang Q Y et al 2019 Plasma Sci. Technol. 21 065504
|
[17] |
Shen X K et al 2007 Appl. Phys. Lett. 91 081501
|
[18] |
Wang Q Y et al 2018 Phys. Plasmas 25 073301
|
[19] |
Shen X K et al 2007 J. Appl. Phys. 102 093301
|
[20] |
Guo L B et al 2011 Opt. Express 19 14067
|
[21] |
Wang Y et al 2016 J. Anal. At. Spectrom. 31 1974
|
[22] |
Rashid B et al 2011 Phys. Plasmas 18 073301
|
[23] |
Shen J et al 2015 Plasma Sci. Technol. 17 147
|
[24] |
Sun D X et al 2014 Plasma Sci. Technol. 16 374
|
[25] |
Lin X M, Li H and Yao Q H 2015 Plasma Sci. Technol. 17 953
|
[26] |
Wang Y et al 2019 Plasma Sci. Technol. 21 034013
|
[27] |
He X N et al 2011 Opt. Express 19 10997
|
[28] |
Chen A M et al 2015 Opt. Express 23 24648
|
[29] |
Harilal S S et al 2005 IEEE Trans. Plasma Sci. 33 474
|
[30] |
Lu Y et al 2015 J. Anal. At. Spectrom. 30 2303
|
[31] |
Pandey P K and Thareja R K 2013 Phys. Plasmas 20 022117
|
[32] |
Singh K S and Sharma A K 2016 Phys. Plasmas 23 122104
|
[33] |
De Giacomo A et al 2013 Anal. Chem. 85 10180
|
[34] |
Chen A M et al 2015 Phys. Plasmas 22 033301
|
[35] |
Aguirre M A et al 2013 Spectrochim. Acta B 79–80 88
|
[36] |
Yang X Y et al 2017 Talanta 163 127
|
[37] |
Darbani S M R et al 2014 J. Eur. Opt. Soc.: Rapid Publ. 9 14058
|
[38] |
Eschlböck-Fuchs S et al 2013 Spectrochim. Acta B 87 36
|
[39] |
Tavassoli S H and Khalaji M 2008 J. Appl. Phys. 103 083118
|
[40] |
Hai R et al 2019 J. Anal. At. Spectrom. 34 2378
|
[41] |
Tavassoli S H and Gragossian A 2009 Opt. Laser Technol.41 481
|
[42] |
Zhang D et al 2020 Optik 202 163511
|
[43] |
Li S C et al 2015 Appl. Surf. Sci. 355 681
|
[44] |
Wang T F et al 2015 Phys. Plasmas 22 033106
|
[45] |
Wang X W et al 2018 J. Anal. At. Spectrom. 33 168
|
[46] |
Chen A M et al 2011 Opt. Commun. 284 2192
|
[47] |
Guo J et al 2012 Opt. Commun. 285 1895
|
[48] |
Zhang D et al 2017 Opt. Laser Technol. 96 117
|
[49] |
Wang Q Y et al 2020 Opt. Laser Technol. 122 105862
|
[50] |
Pandey P K, Gupta S L and Thareja R K 2015 Phys. Plasmas 22 073301
|
[51] |
Xu W P et al 2019 J. Anal. At. Spectrom. 34 1018
|
[52] |
Sabsabi M and Cielo P 1995 Appl. Spectrosc. 49 499
|
[53] |
Kuzuya M et al 1993 Appl. Spectrosc. 47 1659
|
[54] |
Cristoforetti G et al 2004 Spectrochim. Acta B 59 1907
|
[55] |
Ujihara K 1972 J. Appl. Phys. 43 2376
|
[56] |
Guo K M et al 2019 AIP Adv. 9 065214
|
[57] |
Harilal S S et al 2012 Phys. Plasmas 19 083504
|
[58] |
LaHaye N L et al 2014 J. Appl. Phys. 115 163301
|
[59] |
Shaikh N M et al 2013 Spectrochim. Acta B 88 198
|
[60] |
Wang Y et al 2018 Phys. Plasmas 25 033302
|
[61] |
Yang D P et al 2017 Acta Phys. Sin. 66 115201
|
[62] |
Wang Y et al 2020 Phys. Plasmas 27 023507
|
[63] |
Zorba V, Mao X L and Russo R E 2015 Spectrochim. Acta B 113 37
|
[64] |
Bashir S et al 2012 Appl. Phys. 107 203
|
[65] |
Wang Y et al 2020 Opt. Laser Technol. 122 105887
|
[66] |
Wang Q Y et al 2019 J. Anal. At. Spectrom. 34 1242
|
[67] |
Hafez M A et al 2003 Plasma Sources Sci. Technol. 12 185
|
[68] |
Zhang D et al 2018 Phys. Plasmas 25 083305
|
[1] | Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782 |
[2] | Junying WU (伍俊英), Long WANG (汪龙), Yase LI (李雅瑟), Lijun YANG (杨利军), Manzoor SULTAN, Lang CHEN (陈朗). Characteristics of a plasma flow field produced by a metal array bridge foil explosion[J]. Plasma Science and Technology, 2018, 20(7): 75501-075501. DOI: 10.1088/2058-6272/aab783 |
[3] | Fusheng WANG (王富生), Xiangteng MA (马襄腾), Han CHEN (陈汉), Yao ZHANG (张耀). Evolution simulation of lightning discharge based on a magnetohydrodynamics method[J]. Plasma Science and Technology, 2018, 20(7): 75301-075301. DOI: 10.1088/2058-6272/aab841 |
[4] | Mingming SUN (孙明明), Yanhui JIA (贾艳辉), Yongjie HUANG (黄永杰), Juntai YANG (杨俊泰), Xiaodong WEN (温晓东), Meng WANG (王蒙). Study on the influence of three-grid assembly thermal deformation on breakdown times and an ion extraction process[J]. Plasma Science and Technology, 2018, 20(6): 65509-065509. DOI: 10.1088/2058-6272/aaad5d |
[5] | Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0 |
[6] | LIU (刘泽), Guogang YU (余国刚), Anping HE (何安平), Ling WANG (王玲). Simulation of thermal stress in Er2O3 and Al2O3 tritium penetration barriers by finite-element analysis[J]. Plasma Science and Technology, 2017, 19(9): 95602-095602. DOI: 10.1088/2058-6272/aa719d |
[7] | Ying ZHAO (赵颖), Risheng YAO (姚日升), Yuedong MENG (孟月东), Jiaxing LI (李家星), Yiman JIANG (江贻满), Longwei CHEN (陈龙威). The degradation of oxadiazon by non-thermal plasma with a dielectric barrier configuration[J]. Plasma Science and Technology, 2017, 19(3): 34001-034001. DOI: 10.1088/2058-6272/19/3/034001 |
[8] | CUI Xinglei (崔行磊), ZHOU Xue (周学), ZHAI Guofu (翟国富), PENG Xiyuan (彭喜元). Evaporation Erosion During the Relay Contact Breaking Process Based on a Simplified Arc Model[J]. Plasma Science and Technology, 2016, 18(5): 512-519. DOI: 10.1088/1009-0630/18/5/12 |
[9] | NIU Chunping (纽春萍), DING Juwen (丁炬文), WU Yi (吴翊), YANG Fei (杨飞), DONG Delong (董得龙), FAN Xingyu (范星宇), RONG Mingzhe (荣命哲). Simulation and Experimental Analysis of Arc Motion Characteristics in Air Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 241-246. DOI: 10.1088/1009-0630/18/3/05 |
[10] | M’hammed ABBAOUI, Andr′e LEFORT, Erwann CARVOU, Damien SALLAIS, James Brian Alexander MITCHELL, Noureddine BEN JEMAA. Formation of a 40 A DC Current Arc During the Opening of Silver Contacts[J]. Plasma Science and Technology, 2014, 16(5): 471-478. DOI: 10.1088/1009-0630/16/5/06 |
1. | Rizwan, M., Afgan, M.S., Saleem, S. et al. Double Pulse laser-induced breakdown spectroscopy (DP-LIBS): A Comprehensive technique Review. Spectrochimica Acta - Part B Atomic Spectroscopy, 2025. DOI:10.1016/j.sab.2025.107168 | |
2. | Wang, Y., Gao, H., Hong, Y. et al. Influence of distance from lens to sample surface on spectral sensitivity of femtosecond laser-induced breakdown spectroscopy with NaCl water film. Frontiers in Physics, 2022. DOI:10.3389/fphy.2022.964140 | |
3. | Wang, Q., Chen, A., Liu, Y. et al. Comparison of emission signals for femtosecond and nanosecond laser-ablated Cu plasmas by changing the distance from focusing-lens to target-surface at different target temperatures. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106302 | |
4. | Wang, Q., Qi, H., Zeng, X. et al. Time-resolved spectroscopy of collinear femtosecond and nanosecond dual-pulse laser-induced Cu plasmas. Plasma Science and Technology, 2021, 23(11): 115504. DOI:10.1088/2058-6272/ac183b | |
5. | Liu, M., Chen, A., Chen, Y. et al. Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy. Plasma Science and Technology, 2021, 23(7): 075501. DOI:10.1088/2058-6272/abf997 | |
6. | Qi, W., Wang, Q., Shao, J. et al. Influence of target temperature on AlO emission of femtosecond laser-induced Al plasmas. Plasma Science and Technology, 2021, 23(4): 045501. DOI:10.1088/2058-6272/abe52c | |
7. | Wang, Y., Wang, Q., Chen, A. et al. Influence of sample temperature on nanosecond laser-induced Cu plasma spectra. Optik, 2021. DOI:10.1016/j.ijleo.2021.166338 | |
8. | Li, Q., Chen, A., Zhang, D. et al. Time-resolved electron temperature and density of spark discharge assisted femtosecond laser-induced breakdown spectroscopy. Optik, 2021. DOI:10.1016/j.ijleo.2020.165812 | |
9. | Shao, J., Guo, J., Wang, Q. et al. Influence of distance between focusing lens and sample surface on femtosecond laser-induced Cu plasma. Optik, 2020. DOI:10.1016/j.ijleo.2020.165137 | |
10. | Yang, X., Chen, A., Li, S. et al. Effect of Parallel Plate Constraint on CN Molecular Spectra in Laser-Induced PMMA Plasma | [平行板约束对激光诱导PMMA等离子体中CN分子光谱的影响]. Zhongguo Jiguang/Chinese Journal of Lasers, 2020, 47(8): 0811002. DOI:10.3788/CJL202047.0811002 | |
11. | Yang, L., Yang, L., Liu, M. et al. Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy. Chinese Physics B, 2020, 29(6): 065203. DOI:10.1088/1674-1056/ab84dc | |
12. | Fu, Y., Hou, Z., Deguchi, Y. et al. From big to strong: Growth of the Asian laser-induced breakdown spectroscopy community. Plasma Science and Technology, 2019, 21(3): 030101. DOI:10.1088/2058-6272/aaf873 |