Advanced Search+
Zhongqi FENG (冯中琦), Dacheng ZHANG (张大成), Bowen WANG (王博文), Jie DING (丁捷), Xuyang LIU (刘旭阳), Jiangfeng ZHU (朱江峰). The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods[J]. Plasma Science and Technology, 2020, 22(7): 74012-074012. DOI: 10.1088/2058-6272/ab84ed
Citation: Zhongqi FENG (冯中琦), Dacheng ZHANG (张大成), Bowen WANG (王博文), Jie DING (丁捷), Xuyang LIU (刘旭阳), Jiangfeng ZHU (朱江峰). The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods[J]. Plasma Science and Technology, 2020, 22(7): 74012-074012. DOI: 10.1088/2058-6272/ab84ed

The classification of plants by laser-induced breakdown spectroscopy based on two chemometric methods

Funds: This work was supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (No. JB190501), Science and Technology Innovation Team of Shaanxi Province (No. 2019TD-002) and National Natural Science Foundation of China (No. 11774277).
More Information
  • Received Date: December 28, 2019
  • Revised Date: March 23, 2020
  • Accepted Date: March 25, 2020
  • The applications of laser-induced breakdown spectroscopy (LIBS) on classifying complex natural organics are relatively limited and their accuracy still requires improvement. In this work, to study the methods on classification of complex organics, three kinds of fresh leaves were measured by LIBS. 100 spectra from 100 samples of each kind of leaves were measured and then they were divided into a training set and a test set in a ratio of 7:3. Two algorithms of chemometric methods including the partial least squares discriminant analysis (PLS-DA) and principal component analysis Mahalanobis distance (PCA-MD) were used to identify these leaves. By using 23 lines from 16 elements or molecules as input data, these two methods can both classify these three kinds of leaves successfully. The classification accuracies of training sets are both up to 100% by PCA-MD and PLS-DA. The classification accuracies of the test set are 93.3% by PCA-MD and 97.8% by PLS-DA. It means that PLS-DA is better than PCA-MD in classifying plant leaves. Because the components in PLS-DA process are more suitable for classification than those in PCA-MD process. We think that this work can provide a reference for plant traceability using LIBS.
  • [1]
    Samuels A C et al 2003 Appl. Opt. 42 6205
    [2]
    De Lucia F C et al 2003 Appl. Opt. 42 6148
    [3]
    Boueri M et al 2011 Appl. Spectrosc. 65 307
    [4]
    Huth-Fehre T et al 1995 J. Mol. Struct. 348 143
    [5]
    Tada T et al 2008 Nucl. Instrum. Methods Phys. Res. Sec. B Beam Interact. Mater. Atoms 266 2292
    [6]
    Shameem K M M et al 2017 Anal. Bioanal. Chem. 409 3299
    [7]
    Sharma S K et al 2007 Spectrochim. Acta Part A 68 1036
    [8]
    Dussubieux L and Ballard M W 2004 MRS Proc. 852 OO4.1
    [9]
    Zhang D C et al 2018 Opt. Express 26 18794
    [10]
    Hahn D W and Omenetto N 2010 Appl. Spectrosc. 64 335A
    [11]
    Fu Y T et al 2019 Plasma Sci. Technol. 21 030101
    [12]
    Wang Z, Dong F Z and Zhou W D 2015 Plasma Sci. Technol.17 617
    [13]
    Guo Y M et al 2016 Front. Phys. 11 114212
    [14]
    Wang W et al 2019 Plasma Sci. Technol. 21 034004
    [15]
    Sun C et al 2019 Sci. Rep. 9 11363
    [16]
    Yin H L et al 2016 J. Atmos. Environ. Opt. 11 322 (in Chinese)
    [17]
    De Lucia F C et al 2008 Appl. Opt. 47 G112
    [18]
    Grégoire S et al 2012 Spectrochim. Acta Part B 74-75 31
    [19]
    Mousavi S J et al 2016 Appl. Phys. B 122 106
    [20]
    Zhang T L et al 2015 Chin. J. Anal. Chem. 43 939
    [21]
    Guo Y M et al 2018 Plasma Sci. Technol. 20 065505
    [22]
    Wu D et al 2014 Chin. Sci. Bull. 59 2071 (in Chinese)
    [23]
    Moench I, Sattmann R and Noll R 1997 High-speed identification of polymers by laser-induced breakdown spectroscopy Proc. SPIE 3100 64
    [24]
    Yu Y et al 2013 Acta Phys. Sin. 62 215201 (in Chinese)
    [25]
    Peng H B et al 2019 Plasma Sci. Technol. 21 034008
    [26]
    Unnikrishnan V K et al 2013 RSC Adv. 3 25872
    [27]
    De Lucia F C and Gottfried J L 2011 Spectrochim. Acta Part B 66 122
    [28]
    Liu K et al 2017 Spectrosc. Spectr. Anal. 37 3600 (in Chinese)
    [29]
    Wang Q Q et al 2012 Front. Phys. 7 701
    [30]
    Rao G F et al 2018 Chin. J. Anal. Chem. 46 1122 (in Chinese)
    [31]
    Yu X L et al 2017 Spectrosc. Spectr. Anal. 37 1908 (in Chinese)
    [32]
    NIST 2019 Atomic Spectra Database IST Standard Reference Database 78. (www.nist.gov/pml/atomic-spectra-database) (https://doi.org/10.18434/T4W30F)
    [33]
    Zhang D C et al 2010 Chin. Phys. Lett. 27 063202
    [34]
    Ni L J et al 2011 Basic Chemometrics and Its Applications (Shanghai: East China University of Science and Technology Press) (in Chinese)
    [35]
    Bakshi B R 1998 AIChE J. 44 1596
    [36]
    Srinivasaraghavan J and Allada V 2006 Int. J. Adv. Manuf.Technol. 29 1159
    [37]
    Ballabio D and Consonni V 2013 Anal. Methods 5 3790
    [38]
    Liu K et al 2011 Spectrosc. Spectr. Anal. 31 1171 (in Chinese)
    [39]
    Lin P, Chen Y M and He Y 2009 Spectrosc. Spectr. Anal. 29 382 (in Chinese)
  • Related Articles

    [1]Luyun JIANG, Yutong CHEN, Chentao MAO, Jianhui HAN, Anmin CHEN, Jifei YE. Performance optimization of ammonium dinitramide-based liquid propellant in pulsed laser ablation micro-propulsion using LIBS[J]. Plasma Science and Technology, 2025, 27(1): 015503. DOI: 10.1088/2058-6272/ad92f8
    [2]Junwei JIA, Zhifeng LIU, Congyuan PAN, Huaqin XUE. Detection of Al, Mg, Ca, and Zn in copper slag by LIBS combined with calibration curve and PLSR methods[J]. Plasma Science and Technology, 2024, 26(2): 025507. DOI: 10.1088/2058-6272/ad1045
    [3]Jiajia HOU (侯佳佳), Lei ZHANG (张雷), Yang ZHAO (赵洋), Zhe WANG (王哲), Yong ZHANG (张勇), Weiguang MA (马维光), Lei DONG (董磊), Wangbao YIN (尹王保), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Mechanisms and efficient elimination approaches of self-absorption in LIBS[J]. Plasma Science and Technology, 2019, 21(3): 34016-034016. DOI: 10.1088/2058-6272/aaf875
    [4]Xiaomeng LI (李晓萌), Huili LU (陆慧丽), Jianhong YANG (阳建宏), Fu CHANG (常福). Semi-supervised LIBS quantitative analysis method based on co-training regression model with selection of effective unlabeled samples[J]. Plasma Science and Technology, 2019, 21(3): 34015-034015. DOI: 10.1088/2058-6272/aaee14
    [5]Haobin PENG (彭浩斌), Guohua CHEN (陈国华), Xiaoxuan CHEN (陈小玄), Zhimin LU (卢志民), Shunchun YAO (姚顺春). Hybrid classification of coal and biomass by laser-induced breakdown spectroscopy combined with K-means and SVM[J]. Plasma Science and Technology, 2019, 21(3): 34008-034008. DOI: 10.1088/2058-6272/aaebc4
    [6]Shuxia ZHAO (赵书霞), Lei ZHANG (张雷), Jiajia HOU (侯佳佳), Yang ZHAO (赵洋), Wangbao YIN (尹王保), Weiguang MA (马维光), Lei DONG (董磊), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science and Technology, 2018, 20(3): 35502-035502. DOI: 10.1088/2058-6272/aa97ce
    [7]F. MEHARI, M. ROHDE, C. KNIPFER, R. KANAWADE, F. KL¨AMPFL, W. ADLER, N. OETTER, F. STELZLE, M. SCHMIDT. Investigation of Laser Induced Breakdown Spectroscopy (LIBS) for the Differentiation of Nerve and Gland Tissue–A Possible Application for a Laser Surgery Feedback Control Mechanism[J]. Plasma Science and Technology, 2016, 18(6): 654-660. DOI: 10.1088/1009-0630/18/6/12
    [8]LI Xiongwei (李雄威), MAO Xianglei (毛向雷), WANG Zhe (王哲), Richard E. RUSSO. Quantitative Analysis of Carbon Content in Bituminous Coal by Laser-Induced Breakdown Spectroscopy Using UV Laser Radiation[J]. Plasma Science and Technology, 2015, 17(11): 928-932. DOI: 10.1088/1009-0630/17/11/07
    [9]YANG Guang (杨光), QIAO Shujun (乔淑君), CHEN Pengfei (陈鹏飞), DING Yu (丁宇), TIAN Di (田地). Rock and Soil Classification Using PLS-DA and SVM Combined with a Laser-Induced Breakdown Spectroscopy Library[J]. Plasma Science and Technology, 2015, 17(8): 656-663. DOI: 10.1088/1009-0630/17/8/08
    [10]WEN Guanhong(温冠宏), SUN Duixiong(孙对兄), SU Maogen(苏茂根), DONG Chenzhong(董晨钟). LIBS Detection of Heavy Metal Elements in Liquid Solutions by Using Wood Pellet as Sample Matrix[J]. Plasma Science and Technology, 2014, 16(6): 598-601. DOI: 10.1088/1009-0630/16/6/11
  • Cited by

    Periodical cited type(14)

    1. Zheng, Z.-H., Shi, Y., Du, J. et al. Research on the calorific value detection method and influencing mechanism of solid materials via EDXRF. Spectrochimica Acta - Part B Atomic Spectroscopy, 2025. DOI:10.1016/j.sab.2025.107154
    2. Dong, M., Cai, J., Liu, H. et al. A review of laser-induced breakdown spectroscopy and spontaneous emission techniques in monitoring thermal conversion of fuels. Spectrochimica Acta - Part B Atomic Spectroscopy, 2023. DOI:10.1016/j.sab.2023.106807
    3. Zhang, C., Song, W., Hou, Z. et al. Improving quantitative analysis of cement elements in laser-induced breakdown spectroscopy through combining matrix matching with regression. Journal of Analytical Atomic Spectrometry, 2023, 38(12): 2554-2561. DOI:10.1039/d3ja00306j
    4. Yao, S., Yu, Z., Xu, S. et al. Investigation on Laser-induced Plasma Characterization of Coal Under Argon Atmosphere | [氩气环境下煤炭的激光诱导等离子体特性研究]. Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2023, 44(11): 3140-3150.
    5. Dou, Y., Wang, Q., Wang, S. et al. Quantitative Analysis of Coal Quality by a Portable Laser Induced Breakdown Spectroscopy and Three Chemometrics Methods. Applied Sciences (Switzerland), 2023, 13(18): 10049. DOI:10.3390/app131810049
    6. Long, J., Song, W., Hou, Z. et al. A data selection method for matrix effects and uncertainty reduction for laser-induced breakdown spectroscopy. Plasma Science and Technology, 2023, 25(7): 075501. DOI:10.1088/2058-6272/acb6dd
    7. Guan, C., Wu, T., Chen, J. et al. Detection of Carbon Content from Pulverized Coal Using LIBS Coupled with DSC-PLS Method. Chemosensors, 2022, 10(11): 490. DOI:10.3390/chemosensors10110490
    8. Huang, Q., Jiang, Z., Xie, Y. et al. On-line detection method of silicon mass fraction in pig iron based on LIBS spectral line fitting optimization | [基于LIBS谱线拟合优化的生铁硅质量分数在线检测方法]. Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2022, 53(4): 1167-1178. DOI:10.11817/j.issn.1672-7207.2022.04.002
    9. Zhang, D., Zhang, H., Zhao, Y. et al. A brief review of new data analysis methods of laser-induced breakdown spectroscopy: machine learning. Applied Spectroscopy Reviews, 2022, 57(2): 89-111. DOI:10.1080/05704928.2020.1843175
    10. Liu, K., He, C., Zhu, C. et al. A review of laser-induced breakdown spectroscopy for coal analysis. TrAC - Trends in Analytical Chemistry, 2021. DOI:10.1016/j.trac.2021.116357
    11. Chen, J., Zhan, K., Li, Q. et al. Spectral clustering based on histogram of oriented gradient (HOG) of coal using laser-induced breakdown spectroscopy. Journal of Analytical Atomic Spectrometry, 2021, 36(6): 1297-1305. DOI:10.1039/d1ja00104c
    12. Wang, Y., Li, R., Chen, Y. Accurate elemental analysis of alloy samples with high repetition rate laser-ablation spark-induced breakdown spectroscopy coupled with particle swarm optimization-extreme learning machine. Spectrochimica Acta - Part B Atomic Spectroscopy, 2021. DOI:10.1016/j.sab.2021.106077
    13. Chen, G., Wang, Q., Teng, G. et al. Influence of polarization of laser beam on emission intensity of nanosecond laser-induced breakdown spectroscopy. Proceedings of SPIE - The International Society for Optical Engineering, 2021. DOI:10.1117/12.2607071
    14. Liu, J., Dou, Y., Zuo, G. Design of sea ice monitoring UAV platform based on machine learning. Journal of Physics: Conference Series, 2020, 1654(1): 12067. DOI:10.1088/1742-6596/1654/1/012067

    Other cited types(0)

Catalog

    Article views (152) PDF downloads (136) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return