Advanced Search+
Qingdong ZENG (曾庆栋), Guanghui CHEN (陈光辉), Xiangang CHEN (陈献刚), Boyun WANG (王波云), Boyang WAN (万博阳), Mengtian YUAN (袁梦甜), Yang LIU (刘洋), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Rapid online analysis of trace elements in steel using a mobile fiber-optic laser- induced breakdown spectroscopy system[J]. Plasma Science and Technology, 2020, 22(7): 74013-074013. DOI: 10.1088/2058-6272/ab8a0b
Citation: Qingdong ZENG (曾庆栋), Guanghui CHEN (陈光辉), Xiangang CHEN (陈献刚), Boyun WANG (王波云), Boyang WAN (万博阳), Mengtian YUAN (袁梦甜), Yang LIU (刘洋), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Rapid online analysis of trace elements in steel using a mobile fiber-optic laser- induced breakdown spectroscopy system[J]. Plasma Science and Technology, 2020, 22(7): 74013-074013. DOI: 10.1088/2058-6272/ab8a0b

Rapid online analysis of trace elements in steel using a mobile fiber-optic laser- induced breakdown spectroscopy system

Funds: This work was supported by National Natural Science Foundation of China (Nos. 61705064, 11647122), the Natural Science Foundation of Hubei Province (Nos. 2018CFB773, 2018CFB672), and the Project of the Hubei Provincial Department of Education (No. T201617).
More Information
  • Received Date: January 10, 2020
  • Revised Date: April 14, 2020
  • Accepted Date: April 15, 2020
  • A mobile fiber-optic laser-induced breakdown spectrometer (FO-LIBS) prototype was developed to rapidly detect a large quantity of steel material online and quantitatively analyze the trace elements in a large-diameter steel tube. Twenty-four standard samples and a polynomial fitting method were used to establish calibration curve models. The R 2 factors of the calibration curves were all above 0.99, except for Cu, indicating the elements’ strong self-absorption effect. Five special steel materials were rapidly detected in the steel mill. The average absolute errors of Mn, Cr, Ni, V, Cu, and Mo in the special steel materials were 0.039, 0.440, 0.033, 0.057, 0.003, and 0.07wt%, respectively, and their average relative errors fluctuated from 2.9% to 15.7%. The results demonstrated that the performance of this mobile FO-LIBS prototype can be compared with that of most conventional LIBS systems, but the more robust and flexible characteristics of the FO-LIBS prototype provide a feasible approach for promoting LIBS from the laboratory to the industry.
  • [1]
    Oikawa K, Sumi S I and Ishida K 1999 J. Phase Equilib.20 215
    [2]
    Zeng Q D et al 2019 Plasma Sci. Technol. 21 034006
    [3]
    Guo L B et al 2012 Opt. Express 20 1436
    [4]
    Noll R 2012 Laser-Induced Breakdown Spectroscopy (Berlin: Springer)
    [5]
    Wang Z et al 2014 Front. Phys. 9 419
    [6]
    Guo Y M et al 2017 J. Anal. At. Spectrom. 32 2401
    [7]
    Yao S C et al 2011 Appl. Spectrosc. 65 1197
    [8]
    Zheng P C et al 2015 Plasma Sci. Technol. 17 664
    [9]
    Wang Z et al 2015 Plasma Sci. Technol. 17 617
    [10]
    Zou X et al 2014 Opt. Express 22 10233
    [11]
    Hou J J et al 2019 Plasma Sci. Technol. 21 034016
    [12]
    Winefordner J D et al 2004 J. Anal. At. Spectrom. 19 1061
    [13]
    Zeng Q D et al 2015 J. Anal. At. Spectrom. 30 403
    [14]
    Gravel J F et al 2011 J. Anal. At. Spectrom. 26 1354
    [15]
    Scharun M et al 2013 Spectrochim. Acta Part B 87 198
    [16]
    Zeng Q D et al 2016 J. Anal. At. Spectrom. 31 767
    [17]
    Sturm V et al 2014 Anal. Chem. 86 9687
    [18]
    Afgan M S, Hou Z Y and Wang Z 2017 J. Anal. At. Spectrom.32 1905
    [19]
    Davies C et al 1995 Spectrochim. Acta Part B 50 1059
    [20]
    Gruber J et al 2001 Spectrochim. Acta Part B 56 685
    [21]
    Rai A K et al 2003 Appl. Opt. 42 2078
    [22]
    Thornton B et al 2015 Deep-Sea Res. I 95 20
    [23]
    Rakovsky J et al 2014 Spectrochim. Acta Part B 101 269
    [24]
    Lopez-Moreno C et al 2005 J. Anal. At. Spectrom. 20 552
    [25]
    Freedman A et al 2005 Spectrochim. Acta Part B 60 1076
    [26]
    Wormhoudt J et al 2005 Appl. Spectrosc. 59 1098
    [27]
    Yamamoto K Y et al 1996 Appl. Spectrosc. 50 222
    [28]
    Cuñat J et al 2009 Anal. Chim. Acta 633 38
    [29]
    Cristoforetti G et al 2006 J. Anal. At. Spectrom 21 697
    [30]
    Popov A M, Colao F and Fantoni R 2009 J. Anal. At.Spectrom. 24 602
    [31]
    Guo L B et al 2011 Appl. Phys. Lett. 98 131501
    [32]
    Guo L B et al 2011 Opt. Express 19 14067
  • Related Articles

    [1]Zhongma WANG, Chaoyi SHI, Xiuqing ZHANG, Wenwu LU, Sheng ZHANG, Xianhe GAO, Tao XU, Xingxing SHAO, Liansheng HUANG. Analysis and verification of electrodynamic force, thermal stress and current sharing for CRAFT converter structure design[J]. Plasma Science and Technology, 2024, 26(8): 085601. DOI: 10.1088/2058-6272/ad3c6c
    [2]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [3]Xuyang CHEN (陈旭阳), Fangfang SHEN (沈方芳), Yanming LIU (刘彦明), Wei AI (艾炜), Xiaoping LI (李小平). Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application[J]. Plasma Science and Technology, 2018, 20(6): 65503-065503. DOI: 10.1088/2058-6272/aaaa18
    [4]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Chunsheng REN (任春生). Plasma characteristics of direct current enhanced cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2018, 20(6): 65402-065402. DOI: 10.1088/2058-6272/aaac79
    [5]Jianwu HE (贺建武), Longfei MA (马隆飞), Senwen XUE (薛森文), Chu ZHANG (章楚), Li DUAN (段俐), Qi KANG (康琦). Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology, 2018, 20(2): 25403-025403. DOI: 10.1088/2058-6272/aa89e1
    [6]Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab
    [7]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [8]XIAO Jixiong (肖集雄), ZENG Zhong (曾中), XIA Donghui (夏冬辉), WANG Zhijiang (王之江), LIU Changhai (刘昌海). Effects of Boundary Current on Electromagnetic Dispersion Characteristics for a Relativistic Electron Beam[J]. Plasma Science and Technology, 2016, 18(1): 51-57. DOI: 10.1088/1009-0630/18/1/09
    [9]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [10]XI Yanbin (奚衍斌), LIU Yue (刘悦). FDTD Simulation on Power Absorption of Terahertz Electromagnetic Waves in Dense Plasma[J]. Plasma Science and Technology, 2012, 14(1): 5-8. DOI: 10.1088/1009-0630/14/1/02

Catalog

    Article views (156) PDF downloads (133) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return