Advanced Search+
Jingyi LI (李婧祎), Wei ZHANG (张巍), Yu ZHOU (周宇), Boshi YUAN (苑博识), Jixing CAI (蔡继兴), Guangyong JIN (金光勇). The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon[J]. Plasma Science and Technology, 2021, 23(5): 55507-055507. DOI: 10.1088/2058-6272/abf729
Citation: Jingyi LI (李婧祎), Wei ZHANG (张巍), Yu ZHOU (周宇), Boshi YUAN (苑博识), Jixing CAI (蔡继兴), Guangyong JIN (金光勇). The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon[J]. Plasma Science and Technology, 2021, 23(5): 55507-055507. DOI: 10.1088/2058-6272/abf729

The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon

Funds: This study is supported by the Natural Science Foundation of Jilin Province (No. 20200201194JC), the Education Department of Jilin Province (No. JJKH20200735KJ), and National Natural Science Youth Science Fund Project (No. 62005023). We really appreciate Jilin Key Laboratory of Solid-state Laser Technology and Application for supporting our experiment.
More Information
  • Received Date: January 11, 2021
  • Revised Date: April 10, 2021
  • Accepted Date: April 11, 2021
  • The velocity variation law of shock wave induced by millisecond-nanosecond combined-pulse laser has been investigated experimentally. The pulse delay and laser energy are important experimental variables. The method of laser shadowgraphy is used in the experiment. Experimental results show that when the pulse delay is 2.4 ms, the ms and ns laser energy density is 301 J cm−2 and 12 J cm−2, respectively, the velocity of shock wave is 1.09 times faster than that induced by single ns pulse laser. It is inferred that the shock wave propagates in the plasma is faster than that in air. When the ms and ns laser energy density is 414.58 and 24 J cm−2, the velocity of shock wave shows rising trend with pulse delay in a range of 1.4 ms > Δt > 0.8 ms. It is indicated that with the increase of ns laser energy, the laser energy absorbed by laser-supported absorption wave increases. The mechanism of inverse bremsstrahlung absorption acts with target surface absorption simultaneously during the ns laser irradiation. Thus, the phenomenon of the double shock wave is induced. The numerical results of the phenomenon were accordance with experiment. The results of this research can provide a reference for the field of laser propulsion.
  • [1]
    Tao S and Wu B X 2013 Appl. Phys. B 113 251
    [2]
    Yu H C et al 2019 Opt. Express 27 9763
    [3]
    Chen J et al 2010 Chin. Opt. Lett. 8 771
    [4]
    Raǐzer Y P 1965 J. Exp. Theor. Phys. 21 1009
    [5]
    Surzhikov S T 2000 Quantum Electron. 30 416
    [6]
    Surzhikov S T 2009 High Temp. 47 307
    [7]
    Daiber J W and Thompson H M 1967 Phys. Fluids 10 1162
    [8]
    Maher W E, Hall R B and Johnson R R 1974 J. Appl. Phys.45 2138
    [9]
    Li K M et al 2020 Opt. Laser Technol. 130 106361
    [10]
    Jiang Y F et al 2013 Opt. Laser Technol. 45 598
    [11]
    Lee J M and Watkins K G 2001 J. Appl. Phys. 89 6496
    [12]
    Lim H et al 2005 J. Appl. Phys. 97 054903
    [13]
    Cetinkaya C, Vanderwood R and Rowell M 2002 J. Adhes. Sci.Technol. 16 1201
    [14]
    Boueri M et al 2009 Appl. Surf. Sci. 255 9566
    [15]
    Lowder J E et al 1973 J. Appl. Phys. 44 2759
    [16]
    Gacek S and Wang X W 2008 J. Appl. Phys. 104 126101
    [17]
    Gacek S and Wang X W 2009 Appl. Phys. A 94 675
    [18]
    Cao S Q et al 2018 Phys. Plasmas 25 063302
    [19]
    Ma Q L et al 2012 J. Appl. Phys. 111 053301
    [20]
    Choudhury K et al 2016 Phys. Plasmas 23 042108
    [21]
    Kumar B et al 2015 Phys. Plasmas 22 935
    [22]
    Guthikonda N et al 2020 Phys. Plasmas 27 023107
    [23]
    Zhang W et al 2016 Chin. Phys. Lett. 33 014205
    [24]
    Bai X S et al 2013 Spectrochim. Acta B 87 27
    [25]
    Bai X S et al 2015 Spectrochim. Acta B 113 158
    [26]
    Noll R et al 2004 J. Anal. At. Spectrom. 19 419
    [27]
    Wu B X, Zhou Y and Forsman A 2009 Appl. Phys. Lett. 95 251109
    [28]
    Bogaerts A, Chen Z Y and Autrique D 2008 Spectrochim. Acta B 63 746
    [29]
    Cao S Q et al 2020 J. Quant. Spectrosc. Radiat. Transf. 242 106773
    [30]
    Yang Z F et al 2015 Phys. Plasmas 22 073511
    [31]
    Lv X M et al 2017 J. Appl. Phys. 121 113102
    [32]
    Lv X M et al 2018 AIP Adv. 8 055025
    [33]
    Yuan B S et al 2018 Appl. Opt. 57 5743
    [34]
    Yuan B S et al 2018 Materials 11 1419
    [35]
    Pan Y X et al 2015 Opt. Express 23 765
    [36]
    Pan Y X et al 2016 Opt. Lett. 41 2807
    [37]
    Zhang W et al 2016 Laser Phys. 26 015001
    [38]
    Key M H 1969 J. Phys. B At. Mol. Phys. 2 544
    [39]
    Andreopoulos J et al 1989 AIAA J. 27 862
    [40]
    Liou W W, Huang G and Shih T H 2000 Comput. Fluids 29 275
    [41]
    Kato S, Kawakami R and Mima K 1991 Phys. Rev. A 43 5560
    [42]
    Li J Y et al 2020 Appl. Opt. 59 7338
  • Related Articles

    [1]Jiangbo ZHANG, Hongxu GAO, Fei XIAO, Wei LIU, Taixin LIANG, Zhongliang MA, Jian WU. Effect of shock wave formation on propellant ignition in capillary discharge[J]. Plasma Science and Technology, 2022, 24(6): 065504. DOI: 10.1088/2058-6272/ac5e71
    [2]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [3]Xuyang CHEN (陈旭阳), Fangfang SHEN (沈方芳), Yanming LIU (刘彦明), Wei AI (艾炜), Xiaoping LI (李小平). Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application[J]. Plasma Science and Technology, 2018, 20(6): 65503-065503. DOI: 10.1088/2058-6272/aaaa18
    [4]M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002
    [5]ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06
    [6]SUN Quan (孙权), CHENG Bangqin (程邦勤), LI Yinghong (李应红), CUI Wei (崔巍), et al.. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation[J]. Plasma Science and Technology, 2013, 15(11): 1136-1143. DOI: 10.1088/1009-0630/15/11/11
    [7]DUAN Yaoyong (段耀勇), GUO Yonghui (郭永辉), QIU Aici (邱爱慈). Shock Wave and Particle Velocities of Typical Metals on Shock Adiabats[J]. Plasma Science and Technology, 2013, 15(8): 727-731. DOI: 10.1088/1009-0630/15/8/02
    [8]K. KOZUE, G. KUMAKAWA, S. NAMBA, T. ENDO, K. TAKIYAMA, K. SATO, N. TAMURA. Spectroscopic Measurement of Shock Waves in an Arcjet Plasma Expanding Through a Conical Nozzle[J]. Plasma Science and Technology, 2013, 15(2): 89-92. DOI: 10.1088/1009-0630/15/2/01
    [9]FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11
    [10]SUN Quan, CHENG Bangqin, YU Yonggui, LI Yiwen, JIN Di. A Study of Variation Patterns of Shock Wave Control by Different Plasma Aerodynamic Actuations[J]. Plasma Science and Technology, 2010, 12(6): 708-714.
  • Cited by

    Periodical cited type(14)

    1. Liu, H., Ye, J., Rao, W. et al. Experimental investigation on propulsion performance of GAP ablated by combined pulse laser. Optics and Laser Technology, 2025. DOI:10.1016/j.optlastec.2024.112365
    2. Li, Y., Liu, X., Wu, T. et al. Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane. Nature Communications, 2024, 15(1): 5495. DOI:10.1038/s41467-024-49771-3
    3. Song, Y., Qu, M., He, W. et al. Analysis of CFRP inter-laminar cracking location under laser impacts. Polymer Composites, 2024, 45(16): 15261-15275. DOI:10.1002/pc.28835
    4. Yu, H., Cai, J., Mao, H. et al. Study on the influence of side-blown airflow velocities on plasma and combustion wave generated from fused silica induced by combined pulse laser. Plasma Science and Technology, 2024, 26(7): 075511. DOI:10.1088/2058-6272/ad3951
    5. Cao, W., Li, Y., Yan, B. et al. Catalyst-Free Activation and Fixation of Nitrogen by Laser-Induced Conversion. Journal of the American Chemical Society, 2024, 146(21): 14765-14775. DOI:10.1021/jacs.4c02631
    6. Liu, Y., Cai, J., Zhang, Z. et al. Study on the influence of local optical field amplification effect on laser-induced damage of fused silica materials. Journal of Physics D: Applied Physics, 2024, 57(11): 115105. DOI:10.1088/1361-6463/ad13c9
    7. Liang, C., Li, Z., Wang, C. et al. Laser drilling of alumina ceramic substrates: A review. Optics and Laser Technology, 2023. DOI:10.1016/j.optlastec.2023.109828
    8. Wu, T., Chang, B., Li, Y. et al. Laser-induced plasma and local temperature field for high-efficiency ammonia synthesis. Nano Energy, 2023. DOI:10.1016/j.nanoen.2023.108855
    9. Li, J., Zhang, W., Li, Y. et al. Prediction of Shock Wave Velocity Induced by a Combined Millisecond and Nanosecond Laser Based on Convolution Neural Network. Photonics, 2023, 10(9): 1034. DOI:10.3390/photonics10091034
    10. Li, Z., Yang, Z., Jia, X. et al. Numerical analysis of the effect of temporal and/or spatial shaping on the ms/ns combined pulse laser drilling performance of alumina ceramic. Optics and Laser Technology, 2023. DOI:10.1016/j.optlastec.2023.109481
    11. Geng, C., Cai, J., Liu, Y. et al. Study on the Expansion Kinetics of Plasma and Absorption Wave Induced by Millisecond-Nanosecond Combined Pulse Lasers in Fused Quartz. Photonics, 2023, 10(4): 411. DOI:10.3390/photonics10040411
    12. Li, J., Zhang, W., Li, Y. et al. The Acceleration Phenomenon of Shock Wave Induced by Nanosecond Laser Irradiating Silicon Assisted by Millisecond Laser. Photonics, 2023, 10(3): 260. DOI:10.3390/photonics10030260
    13. Wang, L., Cai, J. Study on the effect of focal position change on the expansion velocity and propagation mechanism of plasma generated by millisecond pulsed laser-induced fused silica. Plasma Science and Technology, 2023, 25(3): 035507. DOI:10.1088/2058-6272/ac9892
    14. Jia, X., Chen, Y., Liu, L. et al. Combined pulse laser: Reliable tool for high-quality, high-efficiency material processing. Optics and Laser Technology, 2022. DOI:10.1016/j.optlastec.2022.108209

    Other cited types(0)

Catalog

    Article views (117) PDF downloads (143) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return