Citation: | Jingyi LI (李婧祎), Wei ZHANG (张巍), Yu ZHOU (周宇), Boshi YUAN (苑博识), Jixing CAI (蔡继兴), Guangyong JIN (金光勇). The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon[J]. Plasma Science and Technology, 2021, 23(5): 55507-055507. DOI: 10.1088/2058-6272/abf729 |
[1] |
Tao S and Wu B X 2013 Appl. Phys. B 113 251
|
[2] |
Yu H C et al 2019 Opt. Express 27 9763
|
[3] |
Chen J et al 2010 Chin. Opt. Lett. 8 771
|
[4] |
Raǐzer Y P 1965 J. Exp. Theor. Phys. 21 1009
|
[5] |
Surzhikov S T 2000 Quantum Electron. 30 416
|
[6] |
Surzhikov S T 2009 High Temp. 47 307
|
[7] |
Daiber J W and Thompson H M 1967 Phys. Fluids 10 1162
|
[8] |
Maher W E, Hall R B and Johnson R R 1974 J. Appl. Phys.45 2138
|
[9] |
Li K M et al 2020 Opt. Laser Technol. 130 106361
|
[10] |
Jiang Y F et al 2013 Opt. Laser Technol. 45 598
|
[11] |
Lee J M and Watkins K G 2001 J. Appl. Phys. 89 6496
|
[12] |
Lim H et al 2005 J. Appl. Phys. 97 054903
|
[13] |
Cetinkaya C, Vanderwood R and Rowell M 2002 J. Adhes. Sci.Technol. 16 1201
|
[14] |
Boueri M et al 2009 Appl. Surf. Sci. 255 9566
|
[15] |
Lowder J E et al 1973 J. Appl. Phys. 44 2759
|
[16] |
Gacek S and Wang X W 2008 J. Appl. Phys. 104 126101
|
[17] |
Gacek S and Wang X W 2009 Appl. Phys. A 94 675
|
[18] |
Cao S Q et al 2018 Phys. Plasmas 25 063302
|
[19] |
Ma Q L et al 2012 J. Appl. Phys. 111 053301
|
[20] |
Choudhury K et al 2016 Phys. Plasmas 23 042108
|
[21] |
Kumar B et al 2015 Phys. Plasmas 22 935
|
[22] |
Guthikonda N et al 2020 Phys. Plasmas 27 023107
|
[23] |
Zhang W et al 2016 Chin. Phys. Lett. 33 014205
|
[24] |
Bai X S et al 2013 Spectrochim. Acta B 87 27
|
[25] |
Bai X S et al 2015 Spectrochim. Acta B 113 158
|
[26] |
Noll R et al 2004 J. Anal. At. Spectrom. 19 419
|
[27] |
Wu B X, Zhou Y and Forsman A 2009 Appl. Phys. Lett. 95 251109
|
[28] |
Bogaerts A, Chen Z Y and Autrique D 2008 Spectrochim. Acta B 63 746
|
[29] |
Cao S Q et al 2020 J. Quant. Spectrosc. Radiat. Transf. 242 106773
|
[30] |
Yang Z F et al 2015 Phys. Plasmas 22 073511
|
[31] |
Lv X M et al 2017 J. Appl. Phys. 121 113102
|
[32] |
Lv X M et al 2018 AIP Adv. 8 055025
|
[33] |
Yuan B S et al 2018 Appl. Opt. 57 5743
|
[34] |
Yuan B S et al 2018 Materials 11 1419
|
[35] |
Pan Y X et al 2015 Opt. Express 23 765
|
[36] |
Pan Y X et al 2016 Opt. Lett. 41 2807
|
[37] |
Zhang W et al 2016 Laser Phys. 26 015001
|
[38] |
Key M H 1969 J. Phys. B At. Mol. Phys. 2 544
|
[39] |
Andreopoulos J et al 1989 AIAA J. 27 862
|
[40] |
Liou W W, Huang G and Shih T H 2000 Comput. Fluids 29 275
|
[41] |
Kato S, Kawakami R and Mima K 1991 Phys. Rev. A 43 5560
|
[42] |
Li J Y et al 2020 Appl. Opt. 59 7338
|
[1] | Jiangbo ZHANG, Hongxu GAO, Fei XIAO, Wei LIU, Taixin LIANG, Zhongliang MA, Jian WU. Effect of shock wave formation on propellant ignition in capillary discharge[J]. Plasma Science and Technology, 2022, 24(6): 065504. DOI: 10.1088/2058-6272/ac5e71 |
[2] | Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491 |
[3] | Xuyang CHEN (陈旭阳), Fangfang SHEN (沈方芳), Yanming LIU (刘彦明), Wei AI (艾炜), Xiaoping LI (李小平). Study of plasma-based stable and ultra-wideband electromagnetic wave absorption for stealth application[J]. Plasma Science and Technology, 2018, 20(6): 65503-065503. DOI: 10.1088/2058-6272/aaaa18 |
[4] | M G HAFEZ, N C ROY, M R TALUKDER, M HOSSAIN ALI. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity[J]. Plasma Science and Technology, 2017, 19(1): 15002-015002. DOI: 10.1088/1009-0630/19/1/015002 |
[5] | ZHENG Zhiyuan(郑志远), GAO Hua(高华), GAO Lu(高禄), XING Jie(邢杰). Experimental Investigation of the Properties of an Acoustic Wave Induced by Laser Ablation of a Solid Target in Water-Confined Plasma Propulsion[J]. Plasma Science and Technology, 2014, 16(11): 1032-1035. DOI: 10.1088/1009-0630/16/11/06 |
[6] | SUN Quan (孙权), CHENG Bangqin (程邦勤), LI Yinghong (李应红), CUI Wei (崔巍), et al.. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation[J]. Plasma Science and Technology, 2013, 15(11): 1136-1143. DOI: 10.1088/1009-0630/15/11/11 |
[7] | DUAN Yaoyong (段耀勇), GUO Yonghui (郭永辉), QIU Aici (邱爱慈). Shock Wave and Particle Velocities of Typical Metals on Shock Adiabats[J]. Plasma Science and Technology, 2013, 15(8): 727-731. DOI: 10.1088/1009-0630/15/8/02 |
[8] | K. KOZUE, G. KUMAKAWA, S. NAMBA, T. ENDO, K. TAKIYAMA, K. SATO, N. TAMURA. Spectroscopic Measurement of Shock Waves in an Arcjet Plasma Expanding Through a Conical Nozzle[J]. Plasma Science and Technology, 2013, 15(2): 89-92. DOI: 10.1088/1009-0630/15/2/01 |
[9] | FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11 |
[10] | SUN Quan, CHENG Bangqin, YU Yonggui, LI Yiwen, JIN Di. A Study of Variation Patterns of Shock Wave Control by Different Plasma Aerodynamic Actuations[J]. Plasma Science and Technology, 2010, 12(6): 708-714. |
1. | Liu, H., Ye, J., Rao, W. et al. Experimental investigation on propulsion performance of GAP ablated by combined pulse laser. Optics and Laser Technology, 2025. DOI:10.1016/j.optlastec.2024.112365 |
2. | Li, Y., Liu, X., Wu, T. et al. Pulsed laser induced plasma and thermal effects on molybdenum carbide for dry reforming of methane. Nature Communications, 2024, 15(1): 5495. DOI:10.1038/s41467-024-49771-3 |
3. | Song, Y., Qu, M., He, W. et al. Analysis of CFRP inter-laminar cracking location under laser impacts. Polymer Composites, 2024, 45(16): 15261-15275. DOI:10.1002/pc.28835 |
4. | Yu, H., Cai, J., Mao, H. et al. Study on the influence of side-blown airflow velocities on plasma and combustion wave generated from fused silica induced by combined pulse laser. Plasma Science and Technology, 2024, 26(7): 075511. DOI:10.1088/2058-6272/ad3951 |
5. | Cao, W., Li, Y., Yan, B. et al. Catalyst-Free Activation and Fixation of Nitrogen by Laser-Induced Conversion. Journal of the American Chemical Society, 2024, 146(21): 14765-14775. DOI:10.1021/jacs.4c02631 |
6. | Liu, Y., Cai, J., Zhang, Z. et al. Study on the influence of local optical field amplification effect on laser-induced damage of fused silica materials. Journal of Physics D: Applied Physics, 2024, 57(11): 115105. DOI:10.1088/1361-6463/ad13c9 |
7. | Liang, C., Li, Z., Wang, C. et al. Laser drilling of alumina ceramic substrates: A review. Optics and Laser Technology, 2023. DOI:10.1016/j.optlastec.2023.109828 |
8. | Wu, T., Chang, B., Li, Y. et al. Laser-induced plasma and local temperature field for high-efficiency ammonia synthesis. Nano Energy, 2023. DOI:10.1016/j.nanoen.2023.108855 |
9. | Li, J., Zhang, W., Li, Y. et al. Prediction of Shock Wave Velocity Induced by a Combined Millisecond and Nanosecond Laser Based on Convolution Neural Network. Photonics, 2023, 10(9): 1034. DOI:10.3390/photonics10091034 |
10. | Li, Z., Yang, Z., Jia, X. et al. Numerical analysis of the effect of temporal and/or spatial shaping on the ms/ns combined pulse laser drilling performance of alumina ceramic. Optics and Laser Technology, 2023. DOI:10.1016/j.optlastec.2023.109481 |
11. | Geng, C., Cai, J., Liu, Y. et al. Study on the Expansion Kinetics of Plasma and Absorption Wave Induced by Millisecond-Nanosecond Combined Pulse Lasers in Fused Quartz. Photonics, 2023, 10(4): 411. DOI:10.3390/photonics10040411 |
12. | Li, J., Zhang, W., Li, Y. et al. The Acceleration Phenomenon of Shock Wave Induced by Nanosecond Laser Irradiating Silicon Assisted by Millisecond Laser. Photonics, 2023, 10(3): 260. DOI:10.3390/photonics10030260 |
13. | Wang, L., Cai, J. Study on the effect of focal position change on the expansion velocity and propagation mechanism of plasma generated by millisecond pulsed laser-induced fused silica. Plasma Science and Technology, 2023, 25(3): 035507. DOI:10.1088/2058-6272/ac9892 |
14. | Jia, X., Chen, Y., Liu, L. et al. Combined pulse laser: Reliable tool for high-quality, high-efficiency material processing. Optics and Laser Technology, 2022. DOI:10.1016/j.optlastec.2022.108209 |