Advanced Search+
Miao LIU (刘淼), Anmin CHEN (陈安民), Yutong CHEN (陈雨桐), Xiangyu ZENG (曾祥榆), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Dapeng YANG (杨大鹏), Mingxing JIN (金明星). Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(7): 75501-075501. DOI: 10.1088/2058-6272/abf997
Citation: Miao LIU (刘淼), Anmin CHEN (陈安民), Yutong CHEN (陈雨桐), Xiangyu ZENG (曾祥榆), Qiuyun WANG (王秋云), Dan ZHANG (张丹), Dapeng YANG (杨大鹏), Mingxing JIN (金明星). Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2021, 23(7): 75501-075501. DOI: 10.1088/2058-6272/abf997

Comparison of sample temperature effect on femtosecond and nanosecond laser-induced breakdown spectroscopy

Funds: We acknowledge the support by the Scientific and Technological Research Project of the Education Department of Jilin Province, China (No. JJKH20200937KJ), and National Natural Science Foundation of China (Nos. 11674128, 11674124 and 11974138).
More Information
  • Received Date: January 06, 2021
  • Revised Date: April 14, 2021
  • Accepted Date: April 18, 2021
  • In this paper, we investigated the emission spectra of plasmas produced from femtosecond and nanosecond laser ablations at different target temperatures in air. A brass was selected as ablated target of the experiment. The results indicated that spectral emission intensity and plasma temperature showed similar trend for femtosecond and nanosecond lasers, and the two parameters were improved by increasing the sample temperature in both cases. Moreover, the temperature of nanosecond laser-excited plasma was higher compared with that of femtosecond laser-excited plasma, and the increase of the plasma temperature in the case of nanosecond laser was more evident. In addition, there was a significant difference in electron density between femtosecond and nanosecond laser-induced plasmas. The electron density for femtosecond laser decreased with increasing the target temperature, while for nanosecond laser, the electron density was almost unchanged at different sample temperatures.
  • [1]
    Hou Z et al 2020 Plasma Sci. Technol. 22 070101
    [2]
    Wang Z Z et al 2016 Front. Phys. 11 114213
    [3]
    Wang Z et al 2015 Plasma Sci. Technol. 17 617
    [4]
    Wang Z et al 2014 Front. Phys. 9 419
    [5]
    Zhang D et al 2018 Spectrochim. Acta B 143 71
    [6]
    Yin H L et al 2015 J. Anal. At. Spectrom. 30 922
    [7]
    Wu D et al 2018 Appl. Spectrosc. 72 225
    [8]
    Xu W et al 2019 J. Anal. At. Spectrom. 34 1018
    [9]
    Xu W et al 2019 J. Anal. At. Spectrom. 34 2288
    [10]
    Michel A P M 2010 Spectrochim. Acta B 65 185
    [11]
    Sambri A et al 2008 J. Appl. Phys. 104 053304
    [12]
    Wang T et al 2018 Spectrochim. Acta B 149 300
    [13]
    Qi H et al 2014 J. Anal. At. Spectrom. 29 1105
    [14]
    Palanco S et al 2004 J. Anal. At. Spectrom. 19 462
    [15]
    Sallé B et al 2005 Spectrochim. Acta B 60 479
    [16]
    Harmon R S et al 2013 Spectrochim. Acta B 87 11
    [17]
    Shen X K et al 2009 Appl. Opt. 48 2551
    [18]
    Wang Y et al 2017 Phys. Plasmas 24 013301
    [19]
    Gurevich E L et al 2007 Appl. Spectrosc. 61 233A
    [20]
    Gamaly E G et al 2002 Phys. Plasmas 9 949
    [21]
    Verhoff B et al 2012 J. Appl. Phys. 111 123304
    [22]
    Freeman J R et al 2013 Spectrochim. Acta B 87 43
    [23]
    Harilal S S et al 2014 Appl. Phys. A 117 319
    [24]
    Wang Y et al 2019 Plasma Sci. Technol. 21 034013
    [25]
    Verhoff B et al 2012 J. Appl. Phys. 112 093303
    [26]
    Elhassan A et al 2008 Spectrochim. Acta B 63 504
    [27]
    Eschlböck-Fuchs S et al 2013 Spectrochim. Acta B 87 36
    [28]
    Zhang D et al 2018 Phys. Plasmas 25 083305
    [29]
    Sambri A et al 2007 Appl. Phys. Lett. 91 151501
    [30]
    Wang Y et al 2016 Phys. Plasmas 23 113105
    [31]
    Thorstensen J et al 2012 J. Appl. Phys. 112 103514
    [32]
    Tavassoli S H et al 2009 Opt. Laser Technol. 41 481
    [33]
    Sanginés R et al 2012 Spectrochim. Acta B 68 40
    [34]
    Guo J et al 2018 J. Anal. At. Spectrom. 33 2116
    [35]
    Wang Q et al 2020 Opt. Laser Technol. 121 105773
    [36]
    Wang Y et al 2018 Phys. Plasmas 25 033302
    [37]
    Jiang Z et al 2018 Plasma Sci. Technol. 20 085503
    [38]
    Guo J et al 2017 J. Anal. At. Spectrom. 32 367
    [39]
    Zhang D et al 2019 Plasma Sci. Technol. 21 034009
    [40]
    Yang X et al 2019 Acta Phys. Sin. 68 065201
    [41]
    Yang L et al 2020 Chinese Phys. B 29 65203
    [42]
    Chen A M et al 2015 Opt. Express 23 24648
    [43]
    Wang Y et al 2020 Phys. Plasmas 27 023507
    [44]
    Ujihara K 1972 J. Appl. Phys. 43 2376
    [45]
    Harilal S S et al 2015 Opt. Express 23 15608
    [46]
    Shao J et al 2020 Plasma Sci. Technol. 22 074001
    [47]
    Wang Q et al 2019 J. Anal. At. Spectrom. 34 1242
    [48]
    Hafez M A et al 2003 Plasma Sources Sci. Technol. 12 185
    [49]
    Chen A M et al 2015 Phys. Plasmas 22 033301
    [50]
    Guo K et al 2019 AIP Adv. 9 065214
    [51]
    Zhang D et al 2020 Optik 202 163511
  • Related Articles

    [1]Baowei WANG (王保伟), Chao WANG (王超), Shumei YAO (姚淑美), Yeping PENG (彭叶平), Yan XU (徐艳). Plasma-catalytic degradation of tetracycline hydrochloride over Mn/γ-Al2O3 catalysts in a dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2019, 21(6): 65503-065503. DOI: 10.1088/2058-6272/ab079c
    [2]Xue LI (李雪), Renwu ZHOU (周仁武), Bo ZHANG (张波), Rusen ZHOU (周儒森), Ken OSTRIKOV, Zhi FANG (方志). Design and characteristics investigation of a miniature low-temperature plasma spark discharge device[J]. Plasma Science and Technology, 2019, 21(5): 54005-054005. DOI: 10.1088/2058-6272/aaf111
    [3]Lin WANG (王林), Junkang YAO (姚军康), Zheng WANG (王政), Hongqiao JIAO (焦洪桥), Jing QI (齐静), Xiaojing YONG (雍晓静), Dianhua LIU (刘殿华). Fast and low-temperature elimination of organic templates from SBA-15 using dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2018, 20(10): 101001. DOI: 10.1088/2058-6272/aad547
    [4]Tao ZHU (竹涛), Ruonan WANG (王若男), Wenjing BIAN (边文璟), Yang CHEN (陈扬), Weidong JING (景伟东). Advanced oxidation technology for H2S odor gas using non-thermal plasma[J]. Plasma Science and Technology, 2018, 20(5): 54007-054007. DOI: 10.1088/2058-6272/aaae62
    [5]Pan CHEN (陈攀), Jun SHEN (沈俊), Tangchun RAN (冉唐春), Tao YANG (杨涛), Yongxiang YIN (印永祥). Investigation of operating parameters on CO2 splitting by dielectric barrier discharge plasma[J]. Plasma Science and Technology, 2017, 19(12): 125505. DOI: 10.1088/2058-6272/aa8903
    [6]Pascal ANDRE, William BUSSIERE, Alain COULBOIS, Jean-Louis GELET, David ROCHETTE. Modelling of Electrical Conductivity of a Silver Plasma at Low Temperature[J]. Plasma Science and Technology, 2016, 18(8): 812-820. DOI: 10.1088/1009-0630/18/8/04
    [7]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [8]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [9]N. LARBI DAHO BACHIR, A. BELASRI. A Simplified Numerical Study of the Kr/Cl2 Plasma Chemistry in Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(4): 343-349. DOI: 10.1088/1009-0630/15/4/07
    [10]ZHANG Hong(张虹), JI Tianyi(纪天一), ZHANG Renxi(张仁熙), HOU Huiqi(侯惠奇). Destruction of H2S gas with a Combined Plasma Photolysis (CPP) reactor[J]. Plasma Science and Technology, 2012, 14(2): 134-139. DOI: 10.1088/1009-0630/14/2/10

Catalog

    Article views (148) PDF downloads (312) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return