Advanced Search+
Jiali CHEN, Peiyu JI, Maoyang LI, Tianyuan HUANG, Lanjian ZHUGE, Xuemei WU. Synthesis of Ag-decorated vertical graphene nanosheets and their electrocatalytic efficiencies[J]. Plasma Science and Technology, 2022, 24(5): 054001. DOI: 10.1088/2058-6272/ac4bb5
Citation: Jiali CHEN, Peiyu JI, Maoyang LI, Tianyuan HUANG, Lanjian ZHUGE, Xuemei WU. Synthesis of Ag-decorated vertical graphene nanosheets and their electrocatalytic efficiencies[J]. Plasma Science and Technology, 2022, 24(5): 054001. DOI: 10.1088/2058-6272/ac4bb5

Synthesis of Ag-decorated vertical graphene nanosheets and their electrocatalytic efficiencies

More Information
  • Corresponding author:

    Lanjian ZHUGE, E-mail: ljzhuge@suda.edu.cn

    Xuemei WU, E-mail: xmwu@suda.edu.cn

  • Received Date: September 05, 2021
  • Revised Date: January 12, 2022
  • Accepted Date: January 13, 2022
  • Available Online: December 11, 2023
  • Published Date: April 25, 2022
  • Herein we report the successful preparation of silver (Ag)-decorated vertically oriented graphene sheets (Ag/VGs) via helicon wave plasma chemical vapor deposition (HWP-CVD) and radiofrequency plasma magnetron sputtering (RF-PMS). VGs were synthesized in a mixture of argon and methane (Ar/CH4) by HWP-CVD and then the Ag nanoparticles on the prepared VGs were modified using the RF-PMS system for different sputtering times and RF power levels. The morphology and structure of the Ag nanoparticles were characterized by scanning electron microscopy and the results revealed that Ag nanoparticles were evenly dispersed on the mesoporous wall of the VGs. X-ray diffraction results showed that the diameter of the Ag particles increased with the increase in Ag loading, and the average size was between 10.49 nm and 25.9 nm, consistent with the transmission electron microscopy results. Ag/VGs were investigated as effective electrocatalysts for use in an alkaline aqueous system. Due to the uniquely ordered and interconnected wall structure of VGs, the area of active sites increased with the Ag loading, giving the Ag/VGs a good performance in the oxygen evolution reaction. The double-layer capacitance (Cdl) of the Ag/VGs under different Ag loadings were studied, and the results showed that the highest Ag content gave the best Cdl (1.04 mF cm-2). Our results show that Ag/VGs are likely to be credible electrocatalytic materials.

  • This work is supported by National Natural Science Foundation of China (No. 11975163), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

  • [1]
    Wei H L et al 2021 Chin. J. Catal. 42 1451 doi: 10.1016/S1872-2067(20)63752-4
    [2]
    Yang X H, He P and Xia Y Y 2009 Electrochem. Commun. 11 1127 doi: 10.1016/j.elecom.2009.03.029
    [3]
    Li J et al 2013 Nanoscale 5 4647 doi: 10.1039/c3nr00337j
    [4]
    Liu L L, Niu Z Q and Chen J 2016 Chem. Soc. Rev. 45 4340 doi: 10.1039/C6CS00041J
    [5]
    Che G L et al 1998 Nature 393 346 doi: 10.1038/30694
    [6]
    Gong K P et al 2009 Science 323 760 doi: 10.1126/science.1168049
    [7]
    Zhang H B, Pan X L and Bao X H 2013 J. Energy Chem. 22 251 doi: 10.1016/S2095-4956(13)60031-5
    [8]
    Yu L et al 2012 J. Phys. Chem. C 116 16461 doi: 10.1021/jp302311r
    [9]
    Zhang C J et al 2021 Appl. Surf. Sci. 560 149908 doi: 10.1016/j.apsusc.2021.149908
    [10]
    Yoo E and Zhou H S 2011 ACS Nano 5 3020 doi: 10.1021/nn200084u
    [11]
    Zhang Z Y, Lee C S and Zhang W J 2017 Adv. Energy Mater 7 1700678 doi: 10.1002/aenm.201700678
    [12]
    Xiao X C et al 2011 Electrochem. Commun. 13 209 doi: 10.1016/j.elecom.2010.12.016
    [13]
    Zheng B et al 2015 Chem. Soc. Rev. 44 2108 doi: 10.1039/C4CS00352G
    [14]
    Giorgi L et al 2007 Sens. Actuators B: Chem. 126 144 doi: 10.1016/j.snb.2006.11.018
    [15]
    Machino T et al 2009 Appl. Phys. Express 2 025001 doi: 10.1143/APEX.2.025001
    [16]
    Yang B J et al 2002 Nano Lett. 2 751 doi: 10.1021/nl025572r
    [17]
    Mao S et al 2013 Sci. Rep. 3 1696 doi: 10.1038/srep01696
    [18]
    Kim H et al 2012 J. Mater. Chem. 22 15514 doi: 10.1039/c2jm33150k
    [19]
    Bo Z et al 2015 Chem. Soc. Rev. 44 2108 doi: 10.1039/C4CS00352G
    [20]
    Yu K H et al 2013 J. Mater. Chem. A 1 188 doi: 10.1039/C2TA00380E
    [21]
    Xie X H et al 2017 J. Mater. Chem. A 5 15390 doi: 10.1039/C7TA03287K
    [22]
    Liu B C et al 2018 Chem. Eur. J. 24 3283 doi: 10.1002/chem.201705521
    [23]
    Chen W Q et al 2018 Chem. Commun. 54 7900 doi: 10.1039/C8CC03136C
    [24]
    Ji P Y et al 2020 Diam. Relat. Mater. 108 107958 doi: 10.1016/j.diamond.2020.107958
    [25]
    Zhang C X et al 2011 Electrochim. Acta 56 6033 doi: 10.1016/j.electacta.2011.04.091
    [26]
    Yu X Y, Jiang Z Q and Meng Y D 2010 Plasma Sci. Technol. 12 87 doi: 10.1088/1009-0630/12/1/18
    [27]
    Li S H et al 2016 RSC Adv. 6 99179 doi: 10.1039/C6RA23049K
    [28]
    Qaseem A et al 2016 Catal. Sci. Technol. 6 3317 doi: 10.1039/C5CY02270C
    [29]
    Wang D L et al 2012 Nat. Mater. 12 81 doi: 10.1038/nmat3458
    [30]
    Deng D H et al 2011 Chem. Mater. 23 1188 doi: 10.1021/cm102666r
    [31]
    Zheng X M et al 2015 AIP Adv. 5 057133 doi: 10.1063/1.4921316
    [32]
    Schedin F et al 2010 ACS Nano 4 5617 doi: 10.1021/nn1010842
    [33]
    Sun S T and Wu P Y 2011 Phys. Chem. Chem. Phys. 13 21116 doi: 10.1039/c1cp22727k
    [34]
    Huang M Q et al 2020 Small 16 2000158 doi: 10.1002/smll.202000158
    [35]
    Yuan L Z et al 2014 Electrochim. Acta 135 168 doi: 10.1016/j.electacta.2014.04.137
    [36]
    Espinosa E H et al 2007 Thin Solid Films 515 8322 doi: 10.1016/j.tsf.2007.03.017
    [37]
    Huang L et al 2017 J. Mater. Chem. 5 18610 doi: 10.1039/C7TA05821G
    [38]
    Deng Y Y et al 2021 J. Colloid Interface Sci. 585 800 doi: 10.1016/j.jcis.2020.10.060
    [39]
    Chen G et al 2019 Adv. Mater. 31 1900883 doi: 10.1002/adma.201900883
    [40]
    Wang G H et al 2016 Angew. Chem. Int. Ed. 55 8850 doi: 10.1002/anie.201511558
    [41]
    Zhang C W et al 2014 ACS Catal. 4 1926 doi: 10.1021/cs500107t
    [42]
    Sun M H et al 2016 Chem. Soc. Rev. 45 3479 doi: 10.1039/C6CS00135A
    [43]
    Sun T T et al 2018 J. Mater. Chem. A 6 12751 doi: 10.1039/C8TA03672A
  • Related Articles

    [1]Dian ZHANG (张点), Jun ZHANG (张军), Song LI (李嵩), Jing LIU (刘静), Huihuang ZHONG (钟辉煌). Design and preliminary experiment of radial sheet beam terahertz source based on radial pseudospark discharge[J]. Plasma Science and Technology, 2019, 21(4): 44003-044003. DOI: 10.1088/2058-6272/aafbc3
    [2]Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432
    [3]Rongxiao ZHAI (翟戎骁), Mengtong QIU (邱孟通), Weixi LUO (罗维熙), Peitian CONG (丛培天), Tao HUANG (黄涛), Jiahui YIN (尹佳辉), Tianyang ZHANG (张天洋). Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage[J]. Plasma Science and Technology, 2018, 20(4): 45505-045505. DOI: 10.1088/2058-6272/aaa8d8
    [4]Pengfei ZHANG (张鹏飞), Yang HU (胡杨), Jiang SUN (孙江), Yan SONG (宋岩), Jianfeng SUN (孙剑锋), Zhiming YAO (姚志明), Peitian CONG (丛培天), Mengtong QIU (邱孟通), Aici QIU (邱爱慈). Design and experimental research on a selfmagnetic pinch diode under MV[J]. Plasma Science and Technology, 2018, 20(1): 14014-014014. DOI: 10.1088/2058-6272/aa8592
    [5]Yuantao ZHANG (张远涛), Yu LIU (刘雨), Bing LIU (刘冰). On peak current in atmospheric pulse-modulated microwave discharges by the PIC-MCC model[J]. Plasma Science and Technology, 2017, 19(8): 85402-085402. DOI: 10.1088/2058-6272/aa6a51
    [6]JU Xingbao (琚兴宝), SUN Haishun (孙海顺), YANG Zhuo (杨倬), ZHANG Junmin (张俊民). Investigation on the Arc Ignition Characteristics and Energy Absorption of Liquid Metal Current Limiter Based on Self-Pinch Effect[J]. Plasma Science and Technology, 2016, 18(5): 531-537. DOI: 10.1088/1009-0630/18/5/15
    [7]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [8]DING Siye(丁斯晔), WAN Baonian(万宝年), WANG Lu(王璐), TI Ang(提昂), ZHANG Xinjun(张新军), LIU Zixi(刘子奚), QIAN Jinping(钱金平), ZHONG Guoqiang(钟国强), DUAN Yanmin(段艳敏). Observation of Electron Energy Pinch in HT-7 ICRF Heated Plasmas[J]. Plasma Science and Technology, 2014, 16(9): 826-832. DOI: 10.1088/1009-0630/16/9/04
    [9]YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), HU Shangmao(胡上茂). Emission Current Characteristics of Triggered Device of Vacuum Switch[J]. Plasma Science and Technology, 2014, 16(4): 380-384. DOI: 10.1088/1009-0630/16/4/14
    [10]SUN Jiang (孙江), SUN Jianfeng (孙剑锋), YANG Hailiang (杨海亮), ZHANG Pengfei (张鹏飞), et al.. Plasma Density Influence on the Properties of a Plasma Filled Rod Pinch Diode[J]. Plasma Science and Technology, 2013, 15(9): 904-907. DOI: 10.1088/1009-0630/15/9/14
  • Cited by

    Periodical cited type(13)

    1. Li, J., Xu, Z., Xia, Y. et al. Strategy for preparing nanocrystalline Ta-N gradient layer with enhanced mechanical and tribological performance via microwave plasma nitriding. Ceramics International, 2024, 50(21): 41636-41647. DOI:10.1016/j.ceramint.2024.08.013
    2. Gao, X., Liu, J., Bo, L. et al. Achieving superb mechanical properties in CoCrFeNi high-entropy alloy microfibers via electric current treatment. Acta Materialia, 2024. DOI:10.1016/j.actamat.2024.120203
    3. Li, B., Zhang, X., Tang, S. et al. Influence of spraying power on microstructure, phase composition and nanomechanical properties of plasma-sprayed nanostructured Yb-silicate environmental barrier coatings. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.130450
    4. Wang, Z., Niu, S., Lou, M. et al. The Joint Formation Mechanism, Microstructure, and Mechanical Performance of Resistance Rivet-Welded Mg/Steel Joints. Journal of Materials Engineering and Performance, 2024. DOI:10.1007/s11665-024-10611-6
    5. Niu, J., Miao, B., Guo, J. et al. Leveraging Deep Neural Networks for Estimating Vickers Hardness from Nanoindentation Hardness. Materials, 2024, 17(1): 148. DOI:10.3390/ma17010148
    6. Dong, Z., Pan, R., Zhou, T. et al. Microstructure and mechanical property of Ti/Cu ultra-thin foil lapped joints with different weld depths by nanosecond laser welding. Journal of Manufacturing Processes, 2023. DOI:10.1016/j.jmapro.2023.10.082
    7. Sun, H., Yi, G., Wan, S. et al. Effects of Ni-5 wt% Al/Bi2O3 addition and heat treatment on mechanical and tribological properties of atmospheric plasma sprayed Al2O3 coating. Surface and Coatings Technology, 2023. DOI:10.1016/j.surfcoat.2023.129935
    8. Mishchenko, Y., Patnaik, S., Wallenius, J. et al. Thermophysical properties and oxidation behaviour of the U0.8Zr0.2N solid solution. Nuclear Materials and Energy, 2023. DOI:10.1016/j.nme.2023.101459
    9. Zakaryan, M.K., Malakpour Estalaki, S., Kharatyan, S. et al. Spontaneous Crystallization for Tailoring Polymorphic Nanoscale Nickel with Superior Hardness. Journal of Physical Chemistry C, 2022, 126(29): 12301-12312. DOI:10.1021/acs.jpcc.2c03612
    10. Stekovic, S., Romero-Ramirez, R., Selegård, L. Effect of Nitriding on Microstructure and Mechanical Properties on a Ti64 Alloy for Aerospace Applications. 2022.
    11. Kumar, R.R., Gupta, R.K., Sarkar, A. et al. Vacuum diffusion bonding of α‑titanium alloy to stainless steel for aerospace applications: Interfacial microstructure and mechanical characteristics. Materials Characterization, 2022. DOI:10.1016/j.matchar.2021.111607
    12. Sun, H., Yi, G., Wan, S. et al. Effect of Cr2O3 addition on mechanical and tribological properties of atmospheric plasma-sprayed NiAl-Bi2O3 composite coatings. Surface and Coatings Technology, 2021. DOI:10.1016/j.surfcoat.2021.127818
    13. Raj, M., Prasad, M.J.N.V., Narasimhan, K. Microstructure and Mechanical Properties of Ti-6Al-4V Alloy/Interstitial Free Steel Joint Diffusion Bonded with Application of Copper and Nickel Interlayers. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51(12): 6234-6247. DOI:10.1007/s11661-020-06002-w

    Other cited types(0)

Catalog

    Figures(8)

    Article views (213) PDF downloads (138) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return