Citation: | Nanxuan SHEN, Zihan SU, Yuanhang ZHANG, Tiebing LU. The influence of charge characteristics of suspension droplets on the ion flow field in different temperatures and humidity[J]. Plasma Science and Technology, 2022, 24(4): 044004. DOI: 10.1088/2058-6272/ac5afb |
In order to clarify the charging characteristics of suspension droplets in ion flow field under different temperatures and humidity, the effective charging factor used to characterize the charging characteristics of suspension droplets is introduced in this paper, and a calculation method of charging factor is proposed based on the upstream finite element method (FEM). Then, the charging factor under different temperatures and humidity is calculated, and the analytic expression of the charging factor considering the influence of temperature and humidity is obtained by fitting the calculation results. The influence of suspension droplets on the ion flow field is analyzed. The results show that the charging factor is small and increases little with the relative humidity when the relative humidity is less than 60%, and the charging factor is large and increases rapidly with the relative humidity when the relative humidity is more than 60%. At the same relative humidity, the charging factor increases linearly with the temperature. The influence of charged suspension droplets on the ion flow field can be ignored when the relative humidity is less than 60% and must be considered under high temperature and humidity. The calculation method and analytic expression of the charging factor proposed in this paper can be used to model of ion flow field considering the influence of temperature and humidity and provide technical support for the construction of HVDC transmission lines across high temperature and humidity.
This work is supported by National Natural Science Foundation of China (No. 52077074).
[1] |
Xiao F Y et al 2020 IEEE Trans. Power Delivery
35 684 doi: 10.1109/TPWRD.2019.2920535
|
[2] |
Hao L et al 2020 IEEE Trans. Magn.
56 7513705 doi: 10.1109/TMAG.2019.2957106
|
[3] |
Meng X B et al 2010 High Voltage Eng.
36 1916(in Chinese)
|
[4] |
Dastoori K et al 2014 Measurement
47 116 doi: 10.1016/j.measurement.2013.08.038
|
[5] |
Song D et al 2016 Powder Technol.
290 21 doi: 10.1016/j.powtec.2015.05.049
|
[6] |
Xu F et al 2009 J. Electrost.
67 799 doi: 10.1016/j.elstat.2009.06.002
|
[7] |
Hewitt G W 1957 Trans. Am. Inst. Electr. Eng. Part I Commun. Electron.
76 300 doi: 10.1109/TCE.1957.6372672
|
[8] |
Luo Z Y et al 2014 Proc. CSEE
34 3959(in Chinese)
|
[9] |
Ma X Q et al 2021 Electr. Power Syst. Res.
190 106840 doi: 10.1016/j.epsr.2020.106840
|
[10] |
Li H B et al 2019 Plasma Sci. Technol.
21 074001 doi: 10.1088/2058-6272/ab0a3f
|
[11] |
Zhao Y S and Zhang W L 2013 Proc. CSEE
33 194(in Chinese)
|
[12] |
Allen N L and Kong J C P 2006 IEE Proc. Sci. Meas. Technol.
153 31 doi: 10.1049/ip-smt:20045049
|
[13] |
Yawootti A et al 2015 J. Electrost.
77 116 doi: 10.1016/j.elstat.2015.07.011
|
[14] |
Bian X M et al 2010 IEEE Trans. Dielectr. Electr. Insul.
17 63 doi: 10.1109/TDEI.2010.5412003
|
[15] |
Xu M M et al 2012 IEEE Trans. Dielectr. Electr. Insul.
19 1377 doi: 10.1109/TDEI.2012.6260014
|
[16] |
Aissou M et al 2015 J. Electrost.
76 108 doi: 10.1016/j.elstat.2015.05.019
|
[17] |
Chen L et al 2013 J. Electrost.
71 269 doi: 10.1016/j.elstat.2012.11.020
|
[18] |
Zhang B, He J L and Ji Y M 2019 IEEE Trans. Dielectr. Electr. Insul.
26 1403 doi: 10.1109/TDEI.2019.008001
|
[1] | Jutao YANG (杨巨涛), Jianguo WANG (王建国), Qingliang LI (李清亮), Haiqin CHE (车海琴), Shuji HAO (郝书吉). Optimized analysis of ionospheric amplitude modulated heating parameters for excitation of very/extremely low frequency radiations[J]. Plasma Science and Technology, 2019, 21(7): 75301-075301. DOI: 10.1088/2058-6272/ab0bcd |
[2] | Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Density disturbance of small-scale field- aligned irregularities in the ionosphere heating experiments[J]. Plasma Science and Technology, 2018, 20(12): 125001. DOI: 10.1088/2058-6272/aadd45 |
[3] | Xiang WANG (王翔), Chen ZHOU (周晨), Moran LIU (刘默然), Farideh HONARY, Binbin NI (倪彬彬), Zhengyu ZHAO (赵正予). Threshold of parametric instability in the ionospheric heating experiments[J]. Plasma Science and Technology, 2018, 20(11): 115301. DOI: 10.1088/2058-6272/aac71d |
[4] | Lei YE (叶磊), Xiaotao XIAO (肖小涛), Yingfeng XU (徐颖峰), Zongliang DAI (戴宗良), Shaojie WANG (王少杰). Implementation of field-aligned coordinates in a semi-Lagrangian gyrokinetic code for tokamak turbulence simulation[J]. Plasma Science and Technology, 2018, 20(7): 74008-074008. DOI: 10.1088/2058-6272/aac013 |
[5] | Manman XU (徐曼曼), Yuntao SONG (宋云涛), Gen CHEN (陈根), Yanping ZHAO (赵燕平), Yuzhou MAO (毛玉周), Guang LIU (刘广), Zhen PENG (彭振). Tunable biasing magnetic field design of ferrite tuner for ICRF heating system in EAST[J]. Plasma Science and Technology, 2017, 19(11): 115601. DOI: 10.1088/2058-6272/aa8167 |
[6] | Jun WU (吴军), Jian WU (吴健), Haisheng ZHAO (赵海生), Zhengwen XU (许正文). Analysis of incoherent scatter during ionospheric heating near the fifth electron gyrofrequency[J]. Plasma Science and Technology, 2017, 19(4): 45301-045301. DOI: 10.1088/2058-6272/aa58db |
[7] | CHEN Gen (陈根), QIN Chengming (秦成明), MAO Yuzhou (毛玉周), ZHAO Yanping (赵燕平), YUAN Shuai (袁帅), ZHANG Xinjun (张新军). Power Compensation for ICRF Heating in EAST[J]. Plasma Science and Technology, 2016, 18(8): 870-874. DOI: 10.1088/1009-0630/18/8/14 |
[8] | SUN Jicheng(孙继承), GAO Xinliang(高新亮), LU Quanming(陆全明), WANG Shui(王水). The Efficiency of Ion Stochastic Heating by a Monochromatic Obliquely Propagating Low-Frequency Alfven Wave[J]. Plasma Science and Technology, 2014, 16(10): 919-923. DOI: 10.1088/1009-0630/16/10/04 |
[9] | SHEN Wulin (沈武林), MA Zhibin (马志斌), TAN Bisong (谭必松), WU Jun (吴俊). Ion Heating in an ECR Plasma with a Magnetic Mirror Field[J]. Plasma Science and Technology, 2013, 15(6): 516-520. DOI: 10.1088/1009-0630/15/6/06 |
[10] | Y. YOSHIMURA, S. KUBO, T. SHIMOZUMA, H. IGAMI, H. TAKAHASHI, M. NISHIURA, S. OGASAWARA, R. MAKINO, T. MUTOH, H. YAMADA, A. KOMORI. High Density Plasma Heating by EC-Waves Injected from the High-Field Side for Mode Conversion to Electron Bernstein Waves in LHD[J]. Plasma Science and Technology, 2013, 15(2): 93-96. DOI: 10.1088/1009-0630/15/2/02 |
1. | Zhao, H.-S., Feng, J., Xu, Z.-W. et al. Enhancement of ionospheric heating effect by chemical release. Scientific Reports, 2024, 14(1): 13234. DOI:10.1038/s41598-024-64011-w |
2. | Lv, L., Ma, G., Che, H. et al. Study on Multi-Mode Propagation Characteristics of High-Power High-Frequency Heating Waves. 2024. DOI:10.1109/ISAPE62431.2024.10840662 |