Advanced Search+
H L SWAMI, Deepak SHARMA, C DANANI, P CHAUDHARI, R SRINIVASAN, Rajesh KUMAR. Neutronic analysis of Indian helium-cooled solid breeder tritium breeding module for testing in ITER[J]. Plasma Science and Technology, 2022, 24(6): 065601. DOI: 10.1088/2058-6272/ac5b3f
Citation: H L SWAMI, Deepak SHARMA, C DANANI, P CHAUDHARI, R SRINIVASAN, Rajesh KUMAR. Neutronic analysis of Indian helium-cooled solid breeder tritium breeding module for testing in ITER[J]. Plasma Science and Technology, 2022, 24(6): 065601. DOI: 10.1088/2058-6272/ac5b3f

Neutronic analysis of Indian helium-cooled solid breeder tritium breeding module for testing in ITER

More Information
  • Author Bio:

    H L SWAMI, E-mail: hswami@ipr.res.in

  • Received Date: December 19, 2021
  • Revised Date: March 03, 2022
  • Accepted Date: March 06, 2022
  • Available Online: December 12, 2023
  • Published Date: May 18, 2022
  • India has proposed the helium-cooled solid breeder blanket concept as a tritium breeding module to be tested in ITER. The module has lithium titanate for tritium breeding and beryllium for neutron multiplication. Beryllium also enhances tritium breeding. A design for the module is prepared for detailed analysis. Neutronic analysis is performed to assess the tritium breeding rate, neutron distribution, and heat distribution in the module. The tritium production distribution in submodules is evaluated to support the tritium transport analysis. The tritium breeding density in the radial direction of the module is also assessed for further optimization of the design. The heat deposition profile of the entire module is generated to support the heat removal circuit design. The estimated neutron spectrum in the radial direction also provides a more in-depth picture of the nuclear interactions inside the material zones. The total tritium produced in the HCSB module is around 13.87 mg per full day of operation of ITER, considering the 400 s ON time and 1400 s dwell time. The estimated nuclear heat load on the entire module is around 474 kW, which will be removed by the high-pressure helium cooling circuit. The heat deposition in the test blanket model (TBM) is huge (around 9 GJ) for an entire day of operation of ITER, which demonstrates the scale of power that can be produced through a fusion reactor blanket. As per the Brayton cycle, it is equivalent to 3.6 GJ of electrical energy. In terms of power production, this would be around 1655 MWh annually. The evaluation is carried out using the MCNP5 Monte Carlo radiation transport code and FEDNL 2.1 nuclear cross section data. The HCSB TBM neutronic performance demonstrates the tritium production capability and high heat deposition.

  • Mr H L Swami pays sincere tribute to the late Dr R Srinivasan. He was a good mentor and supervisor. His contribution towards the development of Indian nuclear fusion research always remains with us.

  • [1]
    Deshpande S and Kaw P 2013 Sadhana 38 839 doi: 10.1007/s12046-013-0166-9
    [2]
    Kumar E R, Jayakumar T and Suri A K 2012 Fusion Eng. Des. 87 461 doi: 10.1016/j.fusengdes.2011.12.014
    [3]
    Swami H L, Danani C and Shaw A K 2018 Plasma Sci. Technol. 20 065602 doi: 10.1088/2058-6272/aaabb4
    [4]
    Swami H L et al 2019 Plasma Sci. Technol. 21 065601 doi: 10.1088/2058-6272/ab079a
    [5]
    Abdou M A 1983 Tritium breeding in fusion reactors Nuclear Data for Science and Technology ed K H Böckhoff (Berlin: Springer) 293
    [6]
    Konishi S et al 2017 Nucl. Fusion 57 092014 doi: 10.1088/1741-4326/aa7e4e
    [7]
    Fischer U et al 2016 Fusion Eng. Des. 109–111 1458 doi: 10.1016/j.fusengdes.2015.11.051
    [8]
    Chaudhuri P et al 2013 Fusion Eng. Des. 88 209 doi: 10.1016/j.fusengdes.2013.02.023
    [9]
    Chaudhuri P et al 2014 Fusion Eng. Des. 89 1362 doi: 10.1016/j.fusengdes.2014.02.001
    [10]
    Swami H L et al 2016 Fusion Eng. Des. 113 71 doi: 10.1016/j.fusengdes.2016.09.012
    [11]
    Swami H L et al 2021 Int. J. Energy Res. 45 11735 doi: 10.1002/er.5555
    [12]
    Wu X H et al 2018 Fusion Eng. Des. 136 839 doi: 10.1016/j.fusengdes.2018.04.018
    [13]
    Cho S et al 2014 Fusion Eng. Des. 89 1137 doi: 10.1016/j.fusengdes.2014.01.032
    [14]
    Donne M D et al 1998 Fusion Eng. Des. 39–40 825 doi: 10.1016/S0920-3796(97)00158-0
    [15]
    Fischer U and Donne M D 1998 Fusion Eng. Des. 39–40 835 doi: 10.1016/S0920-3796(97)00202-0
    [16]
    Serikov A, Fischer U and Leichtle D 2019 Fusion neutronics principles International Training Workshop of Radiation Safety and Protection Technology, Institute of Nuclear Energy Safety Technology (INEST)Hefei (Beijing: Chinese Academy of Sciences)
    [17]
    Brown D A 2018 Nucl. Data Sheets 148 1 doi: 10.1016/j.nds.2018.02.001
    [18]
    Aymar R 1997 Fusion Eng. Des. 36 9 doi: 10.1016/S0920-3796(97)00008-2
    [19]
    Sharma D and Chaudhuri P 2018 Fusion Eng. Des. 129 40 doi: 10.1016/j.fusengdes.2018.01.075
    [20]
    Sharma D and Chaudhuri P 2018 Plasma Sci. Technol. 20 065604 doi: 10.1088/2058-6272/aab54a
    [21]
    Polunovskiy E 2013 ITER_D_JLDCY7, 'Status of C-Lite'
    [22]
    Zhang S, Yu S P and He P 2016 Fusion Eng. Des. 113 126 doi: 10.1016/j.fusengdes.2016.11.001
    [23]
    Leichtle D et al 2018 Fusion Eng. Des. 136 742 doi: 10.1016/j.fusengdes.2018.04.002
    [24]
    X-5Monte Carlo Team 2003 X-5 Monte Carlo Team MCNPA General Monte Carlo N-particle Transport Code, Version 5 (Los Alamos, New Mexico: Los Alamos National Laboratory)
    [25]
    Aldama D L and Trkov A FENDL-2.1: fusion evaluated nuclear data library (Dec. 2004) (http://nds.iaea.org/fendl21/)
    [26]
    Linares J I et al 2011 Fusion Eng. Des. 86 2735 doi: 10.1016/j.fusengdes.2011.02.010
  • Related Articles

    [1]Yuyang PAN, Jianyu FENG, Caixia LI, Lifang DONG. Formation of honeycomb-Kagome hexagonal superlattice pattern with dark discharges in dielectric barrier discharge[J]. Plasma Science and Technology, 2022, 24(11): 115401. DOI: 10.1088/2058-6272/ac7c62
    [2]Yunxi SHI (施蕴曦), Yixi CAI (蔡忆昔), Xiaohua LI (李小华), Xiaoyu PU (濮晓宇), Nan ZHAO (赵楠), Weikai WANG (王为凯). Effect of the amount of trapped particulate matter on diesel particulate filter regeneration performance using nonthermal plasma assisted by exhaust waste heat[J]. Plasma Science and Technology, 2020, 22(1): 15504-015504. DOI: 10.1088/2058-6272/ab4d3c
    [3]Zhuang LI (李壮), Xiuling ZHANG (张秀玲), Yuzhuo ZHANG (张玉卓), Dongzhi DUAN (段栋之), Lanbo DI (底兰波). Hydrogen cold plasma for synthesizing Pd/C catalysts: the effect of support–metal ion interaction[J]. Plasma Science and Technology, 2018, 20(1): 14016-014016. DOI: 10.1088/2058-6272/aa7f27
    [4]Hailin ZHAO (赵海林), Tao LAN (兰涛), Adi LIU (刘阿娣), Defeng KONG (孔德峰), Huagang SHEN (沈华刚), Jie WU (吴捷), Wandong LIU (刘万东), Changxuan YU (俞昌旋), Wei ZHANG (张炜), Guosheng XU (徐国盛), Baonian WAN (万宝年). Zonal flow energy ratio evolution during L-H and H-L transitions in EAST plasmas[J]. Plasma Science and Technology, 2017, 19(3): 35101-035101. DOI: 10.1088/2058-6272/19/3/035101
    [5]Manping LI (李曼苹), Kai WU (吴锴), Zhao ZHANG (张钊), Yonghong CHENG (成永红). Effect of toughened epoxy resin on partial discharge at solid–solid interface[J]. Plasma Science and Technology, 2017, 19(2): 25401-025401. DOI: 10.1088/2058-6272/19/2/025401
    [6]WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
    [7]CHEN Jun (陈军), HUANG Jianjun (黄建军), LI Xinjun (李信军), LIU Ying (刘英), et al.. Plasma-Sprayed Coating of an Apatite-Type Lanthanum Silicate Electrolyte for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs)[J]. Plasma Science and Technology, 2013, 15(7): 673-676. DOI: 10.1088/1009-0630/15/7/13
    [8]Heinrich HORA, George H. MILEY, HE Xiantu, ZHENG Wudi, Paraskevas LALOUSIS, Istvan F?OLDES, Sandor SZATMARI, Stavros MOUSTAIZIS, Reynaldo CASTILLO. Ultrahigh Acceleration of Plasma Blocks by Nonlinear Forces for Side-On Laser Ignition of Solid Density Fusion Fuel[J]. Plasma Science and Technology, 2013, 15(5): 420-424. DOI: 10.1088/1009-0630/15/5/05
    [9]SHEN Hong (申虹), WANG Yannan (王延楠). Phases of Dense Matter in Supernovae and Neutron Stars[J]. Plasma Science and Technology, 2012, 14(7): 581-584. DOI: 10.1088/1009-0630/14/7/03
    [10]SHU Song(舒崧), LI Jiarong (李家荣). A Mean-Field Treatment in Studying Nuclear Matter Through a Thermodynamic Consistent Resummation Scheme[J]. Plasma Science and Technology, 2012, 14(5): 379-382. DOI: 10.1088/1009-0630/14/5/07

Catalog

    Figures(9)  /  Tables(1)

    Article views (92) PDF downloads (68) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return