Citation: | Gelu MA, Yanming LIU, Chengwei ZHAO, Chao SUN, Weimin BAO. Microwave method based on curve fitting method for high-precision collision frequency diagnosis[J]. Plasma Science and Technology, 2022, 24(7): 075501. DOI: 10.1088/2058-6272/ac630c |
In this work, the results of plasma microwave transmission diagnosis were analyzed. According to the attenuation and phase shift of the electromagnetic wave propagating in the plasma, the electron density and collision frequency of the plasma can be diagnosed. Since part of the electromagnetic wave is reflected or diffracted when propagating in the plasma, and is not absorbed by the plasma, and this part of the attenuation is still included in the measured attenuation, the attenuation is distorted. Therefore, a curve fitting method is proposed to remove the attenuation caused by the plasma reflection, thereby improving the accuracy of the diagnosis of the collision frequency. The calibration effect of this method on plasmas with different electron densities and collision frequencies is analyzed, and a diagnostic frequency band with good calibration results is given. The curve fitting method is verified by experiment and simulation. After adopting the newly proposed method, the diagnosis accuracy of collision frequency can be increased by 30%. This method can be widely used in various types of plasma diagnosis and provides a new idea for plasma diagnosis.
This work was supported in part by National Natural Science Foundation of China (Nos. 61627901, 61601353, 61801343, and 61901321).
[1] |
Rybak J P and Churchill R J 1971 IEEE Trans. Aerosp. Electron. Syst. AES-7 879 doi: 10.1109/TAES.1971.310328
|
[2] |
Hartunian R A et al 2007 AIAA Atmospheric Flight Mechanics Conference and Exhibit. (El Segundo) (AIAA) (https://doi.org/10.2514/6.2007-6633)
|
[3] |
Xie K et al 2016 J. Appl. Phys. 119 023301 doi: 10.1063/1.4942440
|
[4] |
Bai B W et al 2014 IEEE Trans. Plasma Sci. 42 3365 doi: 10.1109/TPS.2014.2349009
|
[5] |
Zhou H et al 2017 AIP Adv. 7 105314 doi: 10.1063/1.4999039
|
[6] |
Yang M et al 2013 Phys. Plasmas 20 879 doi: 10.1063/1.4773906
|
[7] |
Petrin A B 2000 IEEE Trans. Plasma Sci. 28 1000 doi: 10.1109/27.887768
|
[8] |
Platzman P M and Ozaki H T 1960 J. Appl. Phys. 31 1597 doi: 10.1063/1.1735899
|
[9] |
Laroussi M and Roth J R 2002 IEEE Trans. Plasma Sci. 21 366 doi: 10.1109/27.234562
|
[10] |
Ma P et al 2010 J. Exp. Fluid Mech. 24 51 (in Chinese) doi: 10.3969/j.issn.1672-9897.2010.05.011
|
[11] |
Mo S Q 2016 Research on the properties of plasma based on microwave transmit system MPhil Thesis University of Electronic Science and Technology of China, Chengdu, China (in Chinese)
|
[12] |
Shi N et al 2011 Plasma Sci. Technol. 13 347 doi: 10.1088/1009-0630/13/3/14
|
[13] |
Amemiya H 1988 J. Phys. Soc. Jpn. 57 887 doi: 10.1143/JPSJ.57.887
|
[14] |
Langmuir I and Blodgett K B 1924 Phys. Rev. 24 49 doi: 10.1103/PhysRev.24.49
|
[15] |
Meng S X et al 1989 Nucl. Fusion Plasma Phys. 9 102 (in Chinese) doi: 10.16568/j.0254-6086.1989.02.007
|
[16] |
Weber B V and Fulghum S F 1997 Rev. Sci. Instrum. 68 717 doi: 10.1063/1.1147684
|
[17] |
Chi L F et al 2001 Acta Phys. Sin. 50 1313 (in Chinese) doi: 10.7498/aps.50.1313
|
[18] |
Cartier S and Bosch R 1983 Rev. Sci. Instrum. 54 1789 doi: 10.1063/1.1137337
|
[19] |
Kokura H et al 1999 Jpn. J. Appl. Phys. 38 5262 doi: 10.1143/JJAP.38.5262
|
[20] |
Anzh H, Jian L and Xiaowu N 1991 Chin. Phys. Lett. 8 574 doi: 10.1088/0256-307X/8/11/007
|
[21] |
Hu B J, Wei G and Lai S L 1999 IEEE Trans. Plasma Sci. 27 1131 doi: 10.1109/27.782293
|
[22] |
Yuan Z C, Shi J M and Xu B 2012 Nucl. Fus. Plasma Phys. 32 32 (in Chinese) doi: 10.16568/j.0254-6086.2012.01.015
|
[23] |
Xiao L K et al 2017 J. Ordn. Equip. Eng. 38 44 (in Chinese)
|
[24] |
Zhao C W 2021 High-precision diagnosis of Non-Uniform plasma parameters by microwave PhD Thesis Xidian University, Xi'an, China (in Chinese)
|
[25] |
Zhao C W et al 2020 Microw. Opt. Technol. Lett. 62 1335 doi: 10.1002/mop.32148
|
[26] |
Li X P et al 2021 Plasma Sci. Technol. 23 095501 doi: 10.1088/2058-6272/ac06b9
|
[27] |
Zhao C W et al 2022 Plasma Sources Sci. Technol. 31 015007 doi: 10.1088/1361-6595/ac39ad
|
[1] | Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe |
[2] | Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1 |
[3] | Yang LIU (刘洋), Jiaming SHI (时家明), Li CHENG (程立), Jiachun WANG (汪家春), Zhongcai YUAN (袁忠才), Zongsheng CHEN (陈宗胜). High-power microwave propagation properties in the argon plasma array[J]. Plasma Science and Technology, 2019, 21(1): 15402-015402. DOI: 10.1088/2058-6272/aae369 |
[4] | Wei ZHANG (张伟), Tongyu WU (吴彤宇), Baogang DING (丁宝钢), Yonggao LI (李永高), Yan ZHOU (周艳), Zejie YIN (阴泽杰). A precision control method for plasma electron density and Faraday rotation angle measurement on HL-2A[J]. Plasma Science and Technology, 2017, 19(7): 75603-075603. DOI: 10.1088/2058-6272/aa64cd |
[5] | FU Chao (付超), ZHONG Fangchuan (钟方川), HU Liqun (胡立群), YANG Jianhua (杨建华), YANG Zhendong (仰振东), GAN Kaifu (甘开福), ZHANG Bin (张斌), EAST Team. The Calibration of High-Speed Camera Imaging System for ELMs Observation on EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(9): 884-889. DOI: 10.1088/1009-0630/18/9/02 |
[6] | DING Baogang (丁宝钢), WU Tongyu (吴彤宇), LI Shiping (李世平), ZHOU Yan (周艳), YIN Zejie (阴泽杰). The Real-Time, High Precision Phase Difference Measurement of Electron Density in HL-2A Tokamak[J]. Plasma Science and Technology, 2015, 17(9): 797-801. DOI: 10.1088/1009-0630/17/9/13 |
[7] | FU Wenjie (傅文杰), YAN Yang (鄢扬). Analysis of High-Power Microwave Propagation in a Magnetized Plasma Filled Waveguide[J]. Plasma Science and Technology, 2013, 15(10): 974-978. DOI: 10.1088/1009-0630/15/10/03 |
[8] | YANG Dong (杨东), LU Jingbin (陆景彬), LIU Yunzuo (刘运祚), MA Keyan (马克岩), WANG Huidong (王辉东), WANG Lielin (王烈林), LIU Gongye (刘弓冶), LI Li (李黎), MA Yingjun (马英君), ZHU Lihua (竺礼华), et al. High-k structures in 124Cs[J]. Plasma Science and Technology, 2012, 14(7): 607-609. DOI: 10.1088/1009-0630/14/7/09 |
[9] | Yu Beibei (于蓓蓓), Zhu Lihua (竺礼华), He Chuangye (贺创业), Wu Xiaoguang (吴晓光), Zheng Yun (郑云), Li Guangsheng (李广生), Wang Lielin (王烈林), Yao Shunhe (姚顺和), Zhang Biao (张彪), Xu Chuan (徐川), Hao Xin, et al. High Spin Structure in 106Pd[J]. Plasma Science and Technology, 2012, 14(6): 531-533. DOI: 10.1088/1009-0630/14/6/22 |
[10] | ZHU Shengjiang(朱胜江), GU Long(顾龙), WANG Jianguo(王建国), XIAO Zhigang(肖志刚), Yeoh Eingyee(杨韵颐), ZHANG Ming(张明), LIU Yu(刘宇), DING Huaibo(丁怀博), ZHU Lihua(竺礼华), WU Xiaoguang(吴晓光), HE Chuangy, et al. High-Spin States in 141Pm[J]. Plasma Science and Technology, 2012, 14(6): 496-498. DOI: 10.1088/1009-0630/14/6/13 |
1. | Linczuk, P., Wojeński, A., Czarski, T. et al. Heterogeneous Online Computational Platform for GEM-Based Plasma Impurity Monitoring Systems. Energies, 2024, 17(22): 5539. DOI:10.3390/en17225539 |