Citation: | Xinglong ZHANG, Yifan GE, Enlai WAN, Yuzhu LIU, Jinping YAO. Rapid identification of volatile organic compounds and their isomers in the atmosphere[J]. Plasma Science and Technology, 2022, 24(8): 084002. DOI: 10.1088/2058-6272/ac639b |
Isomers are widely present in volatile organic compounds (VOCs), and it is a tremendous challenge to rapidly distinguish the isomers of VOCs in the atmosphere. In this work, laser-induced breakdown spectroscopy (LIBS) technology was developed to online distinguish VOCs and their isomers in the air. First, LIBS was used to directly detect halogenated hydrocarbons (a typical class of VOCs) and the characteristic peaks of the related halogens were observed in the LIBS spectra. Then, comparing the LIBS spectra of various samples, it was found that for VOCs with different molecular formulas, although the spectra are completely the same in elemental composition, there are still significant differences in the relative intensity of the spectral lines and other information. Finally, in light of the shortcomings of traditional LIBS technology in identifying isomers, machine learning algorithms were introduced to develop the LIBS technique to identify the isomers of atmospheric VOCs, and the recognition results were very good. It is proved that LIBS combined with machine learning algorithms is promising for online traceability of VOCs in the atmospheric environment.
This work was supported by National Natural Science Foundation of China (No. U1932149), the Natural Science Foundation of Jiangsu Province (No. BK20191395) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province of China (No. 18KJA140002). The authors are grateful to Dr Chaochao Qin for assistance with the structure optimization on the Gaussian09 program performed at Henan Normal University.
[1] |
Li G Y et al 2013 J. Hazard. Mater. 250 147 doi: 10.1016/j.jhazmat.2013.01.059
|
[2] |
Guo X Q et al 2019 Opt. Lasers Eng. 115 243 doi: 10.1016/j.optlaseng.2018.12.005
|
[3] |
Hui L R et al 2019 Sci. Total Environ. 650 2624 doi: 10.1016/j.scitotenv.2018.10.029
|
[4] |
Volkamer R et al 2006 Geophys. Res. Lett. 33 254 doi: 10.1029/2006GL026899
|
[5] |
Parker D et al 2013 Atmos. Environ. 66 72 doi: 10.1016/j.atmosenv.2012.03.068
|
[6] |
Hajizadeh Y et al 2018 Environ. Sci. Pollut. Res. 25 6656 doi: 10.1007/s11356-017-1045-4
|
[7] |
Guo H et al 2009 J. Geophys. Res-Atmos. 114 D11302 doi: 10.1029/2008JD011448
|
[8] |
Li Y D et al 2020 Chemosphere 250 126283 doi: 10.1016/j.chemosphere.2020.126283
|
[9] |
Fernandes A et al 2019 J. Cleaner Prod. 208 54 doi: 10.1016/j.jclepro.2018.10.081
|
[10] |
Zhang Z L et al 2018 J. Cleaner Prod. 185 266 doi: 10.1016/j.jclepro.2018.03.037
|
[11] |
Wei L F et al 2021 Chin. J. Catal. 42 1078 doi: 10.1016/S1872-2067(20)63721-4
|
[12] |
Samanta S, Kar C and Das G 2015 Anal. Chem. 87 9002 doi: 10.1021/acs.analchem.5b02202
|
[13] |
Huang Y T and Dodds E D 2015 Anal. Chem. 87 5664 doi: 10.1021/acs.analchem.5b00759
|
[14] |
Peng W J et al 2021 submitted (https://doi.org/10.1002/mas.21713)
|
[15] |
Huang Y T and Dodds E D 2015 Analyst 14 6912 doi: 10.1039/C5AN01093D
|
[16] |
Ashline D J, Zhang H L and Reinhold V N 2017 Anal. Bioanal. Chem. 409 439 doi: 10.1007/s00216-016-0018-7
|
[17] |
Wang H Y et al 2012 Rapid. Commun. Mass Spectrom. 26 1841 doi: 10.1002/rcm.6300
|
[18] |
Zhang Q H et al 2021 Chem. Phys. Lett. 783 139045 doi: 10.1016/j.cplett.2021.139045
|
[19] |
Baudelet M, Willis C C C and Richardson M 2010 Opt. Express 18 7905 doi: 10.1364/OE.18.007905
|
[20] |
Viana L F et al 2019 Chemosphere 228 258 doi: 10.1016/j.chemosphere.2019.04.070
|
[21] |
Fu X L et al 2018 RSC Adv. 8 39635 doi: 10.1039/C8RA07799A
|
[22] |
Hassan M et al 2008 Spectrochim. Acta Part B 63 1225 doi: 10.1016/j.sab.2008.09.015
|
[23] |
Qu Y F et al 2019 Opt. Express 27 A790 doi: 10.1364/OE.27.00A790
|
[24] |
Zhangcheng Y Z et al 2021 Opt. Lasers Eng. 142 106586 doi: 10.1016/j.optlaseng.2021.106586
|
[25] |
Zhang Q H et al 2020 Opt. Express 28 22844 doi: 10.1364/OE.400324
|
[26] |
Imam A M 2018 J. Phys. Conf. Ser. 1027 12012 doi: 10.1088/1742-6596/1027/1/012012
|
[27] |
Wang Q Q et al 2012 Spectrosc. Spectr. Anal. 32 3179(in Chinese) doi: 10.3964/j.issn.1000-0593(2012)12-3179-04
|
[28] |
Yu Q et al 2014 Spectrosc. Spectr. Anal. 34 3095(in Chinese) doi: 10.3964/j.issn.1000-0593(2014)11-3095-05
|
[29] |
Zhang Q H et al 2021 J. Anal. At. Spectrom. 36 1028 doi: 10.1039/d1ja00017a
|
[30] |
National Institute of Standards and Technology, 'NIST Chemistry WebBook, SRD69, ' http://webbook.nist.gov/chemistry/form-ser/
|
[31] |
Soliński M et al 2019 Inform. Med. Unlocked 18 100313 doi: 10.1016/j.imu.2020.100313
|
[32] |
Alvarez-Llamas C et al 2017 J. Anal. At. Spectrom. 32 162 doi: 10.1039/C6JA00386A
|
[1] | Hongjian Zhao, Zehua Guo, Xiangyu Wu, Yong Xiao. Machine learning for electrostatic plasma turbulence classification in tokamaks[J]. Plasma Science and Technology. DOI: 10.1088/2058-6272/add09e |
[2] | Jun XIONG, Shiyu LU, Xiaoming LIU, Wenjun ZHOU, Xiaoming ZHA, Xuekai PEI. Machine learning for parameters diagnosis of spark discharge by electro-acoustic signal[J]. Plasma Science and Technology, 2024, 26(8): 085403. DOI: 10.1088/2058-6272/ad495e |
[3] | Zhao ZHANG, Yaju LI, Guanghui YANG, Qiang ZENG, Xiaolong LI, Liangwen CHEN, Dongbin QIAN, Duixiong SUN, Maogen SU, Lei YANG, Shaofeng ZHANG, Xinwen MA. Estimating the grain size of microgranular material using laser-induced breakdown spectroscopy combined with machine learning algorithms[J]. Plasma Science and Technology, 2024, 26(5): 055506. DOI: 10.1088/2058-6272/ad1792 |
[4] | Xutao XU, Tianchao XU, Chijie XIAO, Zuyu ZHANG, Renchuan HE, Ruixin YUAN, Ping XU. Reconstruction of poloidal magnetic field profiles in field-reversed configurations with machine learning in laser-driven ion-beam trace probe[J]. Plasma Science and Technology, 2024, 26(3): 034012. DOI: 10.1088/2058-6272/ad1042 |
[5] | Wei ZHENG, Fengming XUE, Chengshuo SHEN, Yu ZHONG, Xinkun AI, Zhongyong CHEN, Yonghua DING, Ming ZHANG, Zhoujun YANG, Nengchao WANG, Zhichao ZHANG, Jiaolong DONG, Chouyao TANG, Yuan PAN. Overview of machine learning applications in fusion plasma experiments on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(12): 124003. DOI: 10.1088/2058-6272/ac9e46 |
[6] | Andrey SHASHKOV, Mikhail TYUSHEV, Alexander LOVTSOV, Dmitry TOMILIN, Dmitrii KRAVCHENKO. Machine learning-based method to adjust electron anomalous conductivity profile to experimentally measured operating parameters of Hall thruster[J]. Plasma Science and Technology, 2022, 24(6): 065502. DOI: 10.1088/2058-6272/ac59e1 |
[7] | Zhe DING (丁哲), Jingfeng YAO (姚静锋), Ying WANG (王莹), Chengxun YUAN (袁承勋), Zhongxiang ZHOU (周忠祥), Anatoly A KUDRYAVTSEV, Ruilin GAO (高瑞林), Jieshu JIA (贾洁姝). Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column[J]. Plasma Science and Technology, 2021, 23(9): 95403-095403. DOI: 10.1088/2058-6272/ac125d |
[8] | Shida XU (胥世达), Di JIN (金迪), Feilong SONG (宋飞龙), Yun WU (吴云). Experimental investigation on n-decane plasma cracking in an atmospheric-pressure argon environment[J]. Plasma Science and Technology, 2019, 21(8): 85503-085503. DOI: 10.1088/2058-6272/ab104e |
[9] | JIN Shuo (金硕), RUAN Jiangjun (阮江军), DU Zhiye (杜志叶), ZHU Lin (朱琳), SHU Shengwen (舒胜文). Prediction of DC Corona Onset Voltage for Rod-Plane Air Gaps by a Support Vector Machine[J]. Plasma Science and Technology, 2016, 18(10): 998-1004. DOI: 10.1088/1009-0630/18/10/06 |
[10] | ZHANG Yue, LI Duan, WANG Hongchang. Removal of Volatile Organic Compounds (VOCs) Mixture by Multi-Pin-Mesh Corona Discharge Combined with Pulsed High-Voltage[J]. Plasma Science and Technology, 2010, 12(6): 702-707. |