Citation: | Fu LU, Jian ZHOU, Zhengwei WU. Degradation of antibiotic contaminants from water by gas–liquid underwater discharge plasma[J]. Plasma Science and Technology, 2023, 25(3): 035506. DOI: 10.1088/2058-6272/ac9576 |
Antibiotic contamination adversely affects human health and ecological balance. In this study, gas–liquid underwater discharge plasma was employed to simultaneously degrade three antibiotics, sulfadiazine (SDZ), tetracycline (TC), and norfloxacin (NOR), to address the growing problem of antibiotic contaminants in water. The effects of various parameters on the antibiotic degradation efficiency were evaluated, including the discharge gas type and flow rate, the initial concentration and pH of the solution, and the discharge voltage. Under the optimum parameter configuration, the average removal rate of the three antibiotics was 54.0% and the energy yield was 8.9 g (kW·h)-1 after 5 min treatment; the removal efficiency was 96.5% and the corresponding energy yield was 4.0 g (kW·h)-1 after 20 min treatment. Reactive substance capture and determination experiments indicated that ·OH and O3 played a vital role in the decomposition of SDZ and NOR, but the role of reactive substances in TC degradation was relatively less significant.
This work was supported by the Key R & D Plan of Anhui Province (No. 201904a07020013), Collaborative Innovation Program of Hefei Science Center, CAS (No. CX2140000018), and the Funding for Joint Lab of Applied Plasma Technology (No. JL06120001H).
[1] |
Bennett J W and Chung K T 2001 Adv. Appl. Microbiol. 49 163 doi: 10.1016/S0065-2164(01)49013-7
|
[2] |
Blaser M J 2016 Science 352 544 doi: 10.1126/science.aad9358
|
[3] |
Oberlé K et al 2012 Environ. Sci. Technol. 46 1859 doi: 10.1021/es203399h
|
[4] |
Phoon B L et al 2020 J. Hazard. Mater. 400 122961 doi: 10.1016/j.jhazmat.2020.122961
|
[5] |
Lu Z Y et al 2020 J. Water Process Eng. 38 101681 doi: 10.1016/j.jwpe.2020.101681
|
[6] |
Zhang X T et al 2016 ACS Appl. Mater. Interfaces 8 24273 doi: 10.1021/acsami.6b09377
|
[7] |
Yang X R et al 2021 Chem. Eng. J. 405 126806 doi: 10.1016/j.cej.2020.126806
|
[8] |
Shang K F et al 2017 Chem. Eng. J. 311 378 doi: 10.1016/j.cej.2016.11.103
|
[9] |
Shang K F, Li J and Morent R 2019 Plasma Sci. Technol. 21 043001 doi: 10.1088/2058-6272/aafbc6
|
[10] |
Liu X H et al 2018 Sci. Total Environ. 627 1195 doi: 10.1016/j.scitotenv.2018.01.271
|
[11] |
Chen H Y et al 2018 Sci. Total Environ. 618 409 doi: 10.1016/j.scitotenv.2017.11.054
|
[12] |
Lyu J et al 2020 Environ. Pollut. 266 115147 doi: 10.1016/j.envpol.2020.115147
|
[13] |
Wang B W et al 2019 Plasma Sci. Technol. 21 065503 doi: 10.1088/2058-6272/ab079c
|
[14] |
Aggelopoulos C A et al 2020 Chem. Eng. J. 398 125622 doi: 10.1016/j.cej.2020.125622
|
[15] |
Li H et al 2020 Chem. Eng. J. 395 125091 doi: 10.1016/j.cej.2020.125091
|
[16] |
Zhang T Q et al 2021 Chem. Eng. J. 421 127730 doi: 10.1016/j.cej.2020.127730
|
[17] |
Li W S et al 2022 Chemosphere 291 132757 doi: 10.1016/j.chemosphere.2021.132757
|
[18] |
Yang Z P et al 2019 Front. Environ. Sci. Eng. 13 33 doi: 10.1007/s11783-019-1117-4
|
[19] |
Fang C et al 2022 Sci. Total Environ. 812 152455 doi: 10.1016/j.scitotenv.2021.152455
|
[20] |
Bader H and Hoigné J 1981 Water Res. 15 449 doi: 10.1016/0043-1354(81)90054-3
|
[21] |
Wang H J et al 2016 Vacuum 128 99 doi: 10.1016/j.vacuum.2016.03.015
|
[22] |
Fang C and Huang Q 2018 Plasma Med. 8 321 doi: 10.1615/PlasmaMed.2018028857
|
[23] |
Zhang Q F et al 2018 Chemosphere 210 433 doi: 10.1016/j.chemosphere.2018.07.035
|
[24] |
Wang T C et al 2012 Sep. Purif. Technol. 100 9 doi: 10.1016/j.seppur.2012.08.014
|
[25] |
Guo H et al 2019 Chem. Eng. J. 372 226 doi: 10.1016/j.cej.2019.04.119
|
[26] |
Guo H et al 2020 Sep. Purif. Technol. 253 117540 doi: 10.1016/j.seppur.2020.117540
|
[27] |
Hu X Y and Wang B W 2021 J. Environ. Chem. Eng. 9 105720 doi: 10.1016/j.jece.2021.105720
|
[28] |
Tang S F et al 2018 Chem. Eng. J. 337 446 doi: 10.1016/j.cej.2017.12.117
|
[29] |
Guo H et al 2018 Vacuum 156 402 doi: 10.1016/j.vacuum.2018.07.044
|
[30] |
Duan L J et al 2015 Sep. Purif. Technol. 154 359 doi: 10.1016/j.seppur.2015.09.048
|
[31] |
Tang S F et al 2018 J. Environ. Manage. 226 22 doi: 10.1016/j.jenvman.2018.08.022
|
[32] |
He D et al 2015 J. Chem. Technol. Biotechnol. 90 2249 doi: 10.1002/jctb.4540
|
[33] |
Joshi R P and Thagard S M 2013 Plasma Chem. Plasma Process. 33 17 doi: 10.1007/s11090-013-9436-x
|
[34] |
Guo H et al 2018 Sep. Purif. Technol. 190 288 doi: 10.1016/j.seppur.2017.09.002
|
[35] |
Feng J W et al 2008 J. Hazard. Mater. 154 1081 doi: 10.1016/j.jhazmat.2007.11.013
|
[36] |
Tang S F et al 2019 J. Hazard. Mater. 366 669 doi: 10.1016/j.jhazmat.2018.12.056
|
[37] |
Wang H W et al 2017 J. Environ. Manage. 191 244 doi: 10.1016/j.jenvman.2017.01.021
|
[38] |
Gong S et al 2020 Sep. Purif. Technol. 250 117264 doi: 10.1016/j.seppur.2020.117264
|
[39] |
Guo H et al 2019 Chemosphere 230 190 doi: 10.1016/j.chemosphere.2019.05.011
|
[40] |
Urbano V R et al 2017 J. Environ. Manage. 195 224 doi: 10.1016/j.jenvman.2016.08.019
|
[41] |
Wu H X et al 2021 J. Environ. Manage. 299 113590 doi: 10.1016/j.jenvman.2021.113590
|
[42] |
Cao Y et al 2018 Plasma Sci. Technol. 20 103001 doi: 10.1088/2058-6272/aacff4
|
[43] |
Jiang B et al 2014 Chem. Eng. J. 236 348 doi: 10.1016/j.cej.2013.09.090
|
[44] |
Duan L J et al 2018 Appl. Catal. B: Environ. 221 521 doi: 10.1016/j.apcatb.2017.09.047
|
[45] |
Shang K F et al 2022 Chem. Eng. J. 431 133916 doi: 10.1016/j.cej.2021.133916
|
[1] | Rajesh Prakash GURAGAIN, Hom Bahadur BANIYA, Santosh DHUNGANA, Ganesh Kuwar CHHETRI, Binita SEDHAI, Niroj BASNET, Aavash SHAKYA, Bishnu Prasad PANDEY, Suman Prakash PRADHAN, Ujjwal Man JOSHI, Deepak Prasad SUBEDI. Effect of plasma treatment on the seed germination and seedling growth of radish (Raphanus sativus)[J]. Plasma Science and Technology, 2022, 24(1): 015502. DOI: 10.1088/2058-6272/ac3476 |
[2] | M M RASHID, Mamunur RASHID, M M HASAN, M R TALUKDER. Rice plant growth and yield: foliar application of plasma activated water[J]. Plasma Science and Technology, 2021, 23(7): 75503-075503. DOI: 10.1088/2058-6272/abf549 |
[3] | Sahar A FADHLALMAWLA, Abdel-Aleam H MOHAMED, Jamal Q M ALMARASHI, Tahar BOUTRAA. The impact of cold atmospheric pressure plasma jet on seed germination and seedlings growth of fenugreek (Trigonella foenum-graecum)[J]. Plasma Science and Technology, 2019, 21(10): 105503. DOI: 10.1088/2058-6272/ab2a3e |
[4] | N C ROY, M M HASAN, A H KABIR, M A REZA, M R TALUKDER, A N CHOWDHURY. Atmospheric pressure gliding arc discharge plasma treatments for improving germination, growth and yield of wheat[J]. Plasma Science and Technology, 2018, 20(11): 115501. DOI: 10.1088/2058-6272/aac647 |
[5] | Jinkui FENG (冯金奎), Decheng WANG (王德成), Changyong SHAO (邵长勇), Lili ZHANG (张丽丽), Xin TANG (唐欣). Effects of cold plasma treatment on alfalfa seed growth under simulated drought stress[J]. Plasma Science and Technology, 2018, 20(3): 35505-035505. DOI: 10.1088/2058-6272/aa9b27 |
[6] | LI Ling (李玲), LI Jiangang (李建刚), SHEN Minchong (申民翀), HOU Jinfeng (侯金凤), SHAO Hanliang (邵汉良), DONG Yuanhua (董元华), JIANG Jiafeng (蒋佳峰). Improving Seed Germination and Peanut Yields by Cold Plasma Treatment[J]. Plasma Science and Technology, 2016, 18(10): 1027-1033. DOI: 10.1088/1009-0630/18/10/10 |
[7] | TONG Jiayun(童家赟), HE Rui(何瑞), ZHANG Xiaoli(张晓丽), ZHAN Ruoting(詹若挺), CHEN Weiwen(陈蔚文), YANG Size(杨思泽). Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata[J]. Plasma Science and Technology, 2014, 16(3): 260-266. DOI: 10.1088/1009-0630/16/3/16 |
[8] | DONG Xiaoyu(董晓宇), YUAN Yulian(袁玉莲), TANG Qian(唐乾), DOU Shaohua(窦少华), DI Lanbo(底兰波), ZHANG Xiuling(张秀玲). Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae[J]. Plasma Science and Technology, 2014, 16(1): 73-78. DOI: 10.1088/1009-0630/16/1/16 |
[9] | JIANG Jiafeng(蒋佳峰), HE Xin(何昕), LI Ling(李玲), LI Jiangang(李建刚), SHAO Hanliang(邵汉良), XU Qilai(徐启来), YE Renhong(叶仁宏), DONG Yuanhua(董元华). Effect of Cold Plasma Treatment on Seed Germination and Growth of Wheat[J]. Plasma Science and Technology, 2014, 16(1): 54-58. DOI: 10.1088/1009-0630/16/1/12 |
[10] | LI Xiaoling (李晓玲), WAN Baonian (万宝年), GUO Zhirong (郭智荣), ZHONG Guoqiang (钟国强), HU Liqun (胡立群), LIN Shiyao (林士耀), ZHANG Xinjun (张新军), DING Siye (丁斯晔), LU Bo (吕波). Neutron Yields Based on Transport Calculation in EAST ICRF Minority Heating Plasmas[J]. Plasma Science and Technology, 2013, 15(5): 411-416. DOI: 10.1088/1009-0630/15/5/03 |