Citation: | Jiacheng LI, Cuntao LAN, Lanlan NIE, Dawei LIU, Xinpei LU. Plasma-activated hydrogel: fabrication, functionalization, and effective biological model[J]. Plasma Science and Technology, 2023, 25(9): 093001. DOI: 10.1088/2058-6272/accb24 |
Hydrogels are biomaterials with 3D networks of hydrophilic polymers. The generation of hydrogels is turning to the development of hydrogels with the help of enabling technologies. Plasma can tailor the hydrogels' properties through simultaneous physical and chemical actions, resulting in an emerging technology of plasma-activated hydrogels (PAH). PAH can be divided into functional PAH and biological tissue model PAH. This review systematically introduces the plasma sources, plasma etching polymer surface, and plasma cross-linking involved in the fabrication of PAH. The 'diffusion-drift-reaction model' is used to study the microscopic physicochemical interaction between plasma and biological tissue PAH models. Finally, the main achievements of PAH, including wound treatment, sterilization, 3D tumor model, etc, and their development trends are discussed.
This work was supported by National Natural Science Foundation of China (No. 52277149) and the Inter-disciplinary Program of Wuhan National High Magnetic Field Center (No. WHMFC202144), Huazhong University of Science and Technology.
[1] |
Ahmed E M 2015 J. Adv. Res. 6 105 doi: 10.1016/j.jare.2013.07.006
|
[2] |
Li X W et al 2018 Front. Chem. 6 221 doi: 10.3389/fchem.2018.00221
|
[3] |
Nguyen K T and West J L 2002 Biomaterials 23 4307 doi: 10.1016/S0142-9612(02)00175-8
|
[4] |
Chen Y 2020 Hydrogels Based on Natural Polymers (Amsterdam: Elsevier) p 273
|
[5] |
Drury J L and Mooney D J 2003 Biomaterials 24 4337 doi: 10.1016/S0142-9612(03)00340-5
|
[6] |
Rajera R et al 2011 Biol. Pharm. Bull. 34 945 doi: 10.1248/bpb.34.945
|
[7] |
Ghasemiyeh P and Mohammadi-Samani S 2019 Trends Pharm. Sci. 5 7
|
[8] |
Utech S and Boccaccini A R 2016 J. Mater. Sci. 51 271 doi: 10.1007/s10853-015-9382-5
|
[9] |
Taaca K L M, Prieto E I and Vasquez M R Jr 2022 Polymers 14 2560 doi: 10.3390/polym14132560
|
[10] |
Laroussi M et al 2022 IEEE Trans. Radiat. Plasma Med. Sci. 6 127 doi: 10.1109/TRPMS.2021.3135118
|
[11] |
Liu D 2021 IEEE Int. Conf. on Plasma Science (ICOPS) (Piscataway, NJ: IEEE) 9588465
|
[12] |
Huang Z Z et al 2022 Plasma Process. Polym. 19 2100198 doi: 10.1002/ppap.202100198
|
[13] |
Gao H T et al 2021 Plasma Sources Sci. Technol. 30 053001 doi: 10.1088/1361-6595/abf51b
|
[14] |
Liu D W, Szili E J and Ostrikov K 2020 Plasma Process. Polym. 17 2000097 doi: 10.1002/ppap.202000097
|
[15] |
Liu D W et al 2020 Plasma Process. Polym. 17 1900218 doi: 10.1002/ppap.201900218
|
[16] |
Liguori A et al 2016 Sci. Rep. 6 38542 doi: 10.1038/srep38542
|
[17] |
Thulliez M et al 2021 J. Phys. D: Appl. Phys. 54 463001 doi: 10.1088/1361-6463/ac1623
|
[18] |
Lee S C, Kwon I K and Park K 2013 Adv. Drug Deliv. Rev. 65 17 doi: 10.1016/j.addr.2012.07.015
|
[19] |
Van Bemmelen J M 1894 Z. Anorg. Chem. 5 466 doi: 10.1002/zaac.18940050156
|
[20] |
Akhtar M F, Hanif M and Ranjha N M 2016 Saudi Pharm. J. 24 554 doi: 10.1016/j.jsps.2015.03.022
|
[21] |
Mathur A M, Moorjani S K and Scranton A B 1996 J. Macromol. Sci. C 36 405 doi: 10.1080/15321799608015226
|
[22] |
Yahia L H et al 2015 J. Biomed. Sci. 1 1170426
|
[23] |
Park D et al 2013 IEEE Trans. Plasma Sci. 41 1725 doi: 10.1109/TPS.2013.2265373
|
[24] |
Zhang H et al 2021 Biomaterials 276 121057 doi: 10.1016/j.biomaterials.2021.121057
|
[25] |
Chuang C H et al 2018 Artif. Cells Nanomed. Biotechnol. 46 434
|
[26] |
Echalier C et al 2019 Mater. Today Commun. 20 100536 doi: 10.1016/j.mtcomm.2019.05.012
|
[27] |
Zhou Q L et al 2021 ACS Appl. Polym. Mater. 3 5932 doi: 10.1021/acsapm.1c01189
|
[28] |
Timilsena Y P et al 2019 Int. J. Biol. Macromol. 121 1276 doi: 10.1016/j.ijbiomac.2018.10.144
|
[29] |
Endo R and Sugiyama J 2013 Holzforschung 67 795 doi: 10.1515/hf-2012-0181
|
[30] |
Elsayed M M 2019 J. Polym. Environ. 27 871 doi: 10.1007/s10924-019-01376-4
|
[31] |
Hu W K et al 2019 Biomater. Sci. 7 843 doi: 10.1039/C8BM01246F
|
[32] |
Pourjavadi A, Barzegar S and Zeidabadi F 2007 React. Funct. Polym. 67 644 doi: 10.1016/j.reactfunctpolym.2007.04.007
|
[33] |
Mantha S et al 2019 Materials 12 3323 doi: 10.3390/ma12203323
|
[34] |
Hein C D, Liu X M and Wang D 2008 Pharm. Res. 25 2216 doi: 10.1007/s11095-008-9616-1
|
[35] |
Kolb H C, Finn M G and Sharpless K B 2001 Angew. Chem. Int. Ed. 40 2004 doi: 10.1002/1521-3773(20010601)40:11<2004::AID-ANIE2004>3.0.CO;2-5
|
[36] |
Sand A and Vyas A 2020 Introductory chapter: Organic Polymer—Graft Copolymers (London, UK: IntechOpen)
|
[37] |
Xiang J X, Shen L and Hong Y L 2020 Eur. Polym. J. 130 109609 doi: 10.1016/j.eurpolymj.2020.109609
|
[38] |
Liu Z X et al 2019 ACS Appl. Mater. Interfaces 11 22941 doi: 10.1021/acsami.9b04700
|
[39] |
Sun C Y et al 2022 Chem. Eng. J. 427 130843 doi: 10.1016/j.cej.2021.130843
|
[40] |
Dolci L S et al 2018 Colloids Surf. B 163 73 doi: 10.1016/j.colsurfb.2017.12.030
|
[41] |
Xu L et al 2020 Food Bioprocess Technol. 13 1688 doi: 10.1007/s11947-020-02506-w
|
[42] |
Karki S B et al 2017 J. Phys. D: Appl. Phys. 50 315401 doi: 10.1088/1361-6463/aa7b10
|
[43] |
Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002 doi: 10.1088/0963-0252/25/5/053002
|
[44] |
Lu Q F et al 2011 Plasma Process. Polym. 8 803 doi: 10.1002/ppap.201000144
|
[45] |
Zhang W M et al 2015 RSC Adv. 5 6505 doi: 10.1039/C4RA11222A
|
[46] |
Hamouda I et al 2020 Polymer 192 122308 doi: 10.1016/j.polymer.2020.122308
|
[47] |
Taaca K L M et al 2022 Colloids Surf. A 637 128233 doi: 10.1016/j.colsurfa.2021.128233
|
[48] |
Thomas S et al 2019 Non-Thermal Plasma Technology for Polymeric Materials (Amsterdam: Elsevier) p 67
|
[49] |
Latag G V and Vasquez M R Jr 2018 J. Vac. Sci. Technol. B 36 04I101
|
[50] |
Jiang J X et al 2016 Phys. Plasmas 23 103503 doi: 10.1063/1.4964364
|
[51] |
Duan J, Lu X and He G 2017 Phys. Plasmas 24 073506 doi: 10.1063/1.4990554
|
[52] |
Dobrynin D et al 2009 New J. Phys. 11 115020 doi: 10.1088/1367-2630/11/11/115020
|
[53] |
Liu D X et al 2016 Sci. Rep. 6 23737 doi: 10.1038/srep23737
|
[54] |
Lietz A M and Kushner M J 2016 J. Phys. D: Appl. Phys. 49 425204 doi: 10.1088/0022-3727/49/42/425204
|
[55] |
Xu L et al 2017 Food Bioprocess Technol. 10 1778 doi: 10.1007/s11947-017-1947-7
|
[56] |
Martínez-Gómez A J et al 2014 Polym. Eng. Sci. 54 2264 doi: 10.1002/pen.23778
|
[57] |
Dalei G et al 2021 J. Polym. Environ. 29 1663 doi: 10.1007/s10924-020-02007-z
|
[58] |
Levien M et al 2022 Appl. Surf. Sci. 584 152511 doi: 10.1016/j.apsusc.2022.152511
|
[59] |
Dalei G, Das S and Das S P 2022 Starch 74 2100226 doi: 10.1002/star.202100226
|
[60] |
Suresh M et al 2022 J. Phys. D: Appl. Phys. 55 185201 doi: 10.1088/1361-6463/ac4ec6
|
[61] |
Lee H R et al 2021 Mater. Sci. Eng. C 128 112304 doi: 10.1016/j.msec.2021.112304
|
[62] |
Nguyen H T et al 2020 Plasma Process. Polym. 17 2000110 doi: 10.1002/ppap.202000110
|
[63] |
Dalei G et al 2020 ChemistrySelect 5 2168 doi: 10.1002/slct.201904449
|
[64] |
Labay C et al 2020 ACS Appl. Mater. Interfaces 12 47256 doi: 10.1021/acsami.0c12930
|
[65] |
Jovančić P, Vílchez A and Molina R 2016 Plasma Process. Polym. 13 752 doi: 10.1002/ppap.201500194
|
[66] |
Paradiso P et al 2015 J. Biomed. Mater. Res. B 103 1059 doi: 10.1002/jbm.b.33287
|
[67] |
Satapathy M K et al 2017 PeerJ 5 e3498 doi: 10.7717/peerj.3498
|
[68] |
Nolan H et al 2019 Plasma Process. Polym. 16 1800128 doi: 10.1002/ppap.201800128
|
[1] | Weijie HUO, Weiguo HE, Luofeng HAN, Kangwu ZHU, Feng WANG. A study of pulsed high voltage driven hollow-cathode electron beam sources through synchronous optical trigger[J]. Plasma Science and Technology, 2024, 26(5): 055501. DOI: 10.1088/2058-6272/ad113e |
[2] | Tianchi WANG (王天驰), Haiyang WANG (王海洋), Wei CHEN (陈伟), Yingchao DU (杜应超), Linshen XIE (谢霖燊), Tao HUANG (黄涛), Zhiqiang CHEN (陈志强), Junna LI (李俊娜), Fan GUO (郭帆), Gang WU (吴刚). A calculation model for breakdown time delay and jitter of gas switches under hundred-nanosecond pulses and its application in a self-triggered pre-ionized switch[J]. Plasma Science and Technology, 2021, 23(11): 115507. DOI: 10.1088/2058-6272/ac2358 |
[3] | Chunxia LIANG (梁春霞), Ning WANG (王宁), Zhengchao DUAN (段正超), Feng HE (何锋), Jiting OUYANG (欧阳吉庭). Experimental investigations of enhanced glow based on a pulsed hollow-cathode discharge[J]. Plasma Science and Technology, 2019, 21(2): 25401-025401. DOI: 10.1088/2058-6272/aaef49 |
[4] | Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432 |
[5] | Shoujie HE (何寿杰), Peng WANG (王鹏), Jing HA (哈静), Baoming ZHANG (张宝铭), Zhao ZHANG (张钊), Qing LI (李庆). Effects of discharge parameters on the micro-hollow cathode sustained glow discharge[J]. Plasma Science and Technology, 2018, 20(5): 54006-054006. DOI: 10.1088/2058-6272/aab54b |
[6] | HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13 |
[7] | HUANG Zhongde(黄忠德), YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), QIU Aici(邱爱慈). Experimental Research of ZnO Surface Flashover Trigger Device of Pseudo-Spark Switch[J]. Plasma Science and Technology, 2014, 16(5): 506-511. DOI: 10.1088/1009-0630/16/5/11 |
[8] | LI Shichao(李世超), HE Feng(何锋), GUO Qi(郭琦), OUYANG Jiting(欧阳吉庭). Deposition of Diamond-Like Carbon on Inner Surface by Hollow Cathode Discharge[J]. Plasma Science and Technology, 2014, 16(1): 63-67. DOI: 10.1088/1009-0630/16/1/14 |
[9] | HE Feng (何锋), HE Shoujie (何寿杰), ZHAO Xiaofei (赵晓菲), GUO Bingang (郭滨刚), OUYANG Jiting (欧阳吉庭). Study of the Discharge Mode in Micro-Hollow Cathode[J]. Plasma Science and Technology, 2012, 14(12): 1079-1083. DOI: 10.1088/1009-0630/14/12/08 |
[10] | SHI Wei, XUE Hong, LI Ning, CHEN Suguo, DAI Ruijuan. Fiber-Optically Triggered Four Parallel GaAs Photoconductive Semiconductor Switches[J]. Plasma Science and Technology, 2011, 13(6): 747-750. |
1. | Yan, J., Shen, S., Sun, G. et al. Revealing phase transitions and instabilities in pseudospark discharges. High Voltage, 2023, 8(4): 819-832. DOI:10.1049/hve2.12281 | |
2. | Yan, J., Shen, S., Ding, W. et al. A Miniaturized Sealed-Off Double-Gap Pseudospark Switch for High Power and High Repetition Rate Pulsed Discharge Applications. IEEE Transactions on Industry Applications, 2023, 59(3): 3056-3066. DOI:10.1109/TIA.2023.3247401 | |
3. | Sun, G., Wang, X., Ding, W. et al. Study on Pseudospark Switch Triggered by 532-nm Focused Laser. IEEE Transactions on Electron Devices, 2023, 70(2): 765-770. DOI:10.1109/TED.2022.3229279 | |
4. | Yan, J., Shen, S., Ding, W. et al. Revealing pre-breakdown processes of a single-gap pseudospark switch triggered from the anode side. Vacuum, 2023. DOI:10.1016/j.vacuum.2022.111684 | |
5. | Shen, S., Yan, J., Sun, G. et al. Influences of gas pressure and applied voltage on electron beam generated by triggered pseudospark discharge. Physics of Plasmas, 2022, 29(5): 053503. DOI:10.1063/5.0085479 | |
6. | Yan, J., Wang, W., Shen, S. et al. Repetitive Operation and Insulation Recovery Characteristics of a Sealed-off Double-gap Pseudospark Switch. 2022. DOI:10.1109/CIEEC54735.2022.9846766 | |
7. | Yan, J., Shen, S., Sun, G. et al. Characteristics of Triggering and Conduction of a Double-gap Pseudospark Switch | [双间隙伪火花开关的触发及导通特性]. Gaodianya Jishu/High Voltage Engineering, 2021, 47(8): 2799-2810. DOI:10.13336/j.1003-6520.hve.20200528025 | |
8. | Yan, J., Shen, S., Sun, G. et al. Review on Physical Mechanisms and Applications of Pseudospark Discharge | [伪火花放电的物理机制与应用综述]. Diangong Jishu Xuebao/Transactions of China Electrotechnical Society, 2021, 36(11): 2408-2423. DOI:10.19595/j.cnki.1000-6753.tces.200262 | |
9. | Yan, J., Shen, S., Sun, G. et al. Influence of Trigger Injection on Performances of a Single-Gap Pseudospark Switch. IEEE Transactions on Electron Devices, 2021, 68(5): 2485-2491. DOI:10.1109/TED.2021.3068084 |