Citation: | Kaixuan YE, Zhen ZHOU, Tao ZHANG, Jiuyang MA, Yumin WANG, Gongshun LI, Kangning GENG, Mingfu WU, Fei WEN, Jia HUANG, Yang ZHANG, Linming SHAO, Shuqi YANG, Fubin ZHONG, Shanlu GAO, Lin YU, Ziqiang ZHOU, Haoming XIANG, Xiang HAN, Shoubiao ZHANG, Guoqiang LI, Xiang GAO, the EAST Team. Experimental study of core MHD behavior and a novel algorithm for rational surface detection based on profile reflectometry in EAST[J]. Plasma Science and Technology, 2024, 26(3): 034010. DOI: 10.1088/2058-6272/ad0f0a |
Microwave reflectometry is a powerful diagnostic that can measure the density profile and localized turbulence with high spatial and temporal resolution and will be used in ITER, so understanding the influence of plasma perturbations on the reflect signal is important. The characteristics of the reflect signal from profile reflectometry, the time-of-flight (TOF) signal associated with the MHD instabilities, are investigated in EAST. Using a 1D full-wave simulation code by the Finite-DifferenceTime-Domain (FDTD) method, it is well validated that the local density flattening could induce the discontinuity of the simulated TOF signal and an obvious change of reflect amplitude. Experimental TOF signals under different types of MHD instabilities (sawtooth, sawtooth precursors and tearing mode) are studied in detail and show agreement with the simulation. Two new improved algorithms for detecting and localizing the radial positions of the low-order rational surface, the cross-correlation and gradient threshold (CGT) method and the 2D convolutional neural network approach (CNN) are presented for the first time. It is concluded that TOF signal analysis from profile reflectometry can provide a straightforward and localized measurement of the plasma perturbation from the edge to the core simultaneously and may be a complement or correction to the q-profile control, which will be beneficial for the advanced tokamak operation.
The authors would like to acknowledge the help of Yuqi CHU for the q-profile. The authors would like to thank Ang TI and Yan CHAO in EAST for the helpful discussions. This work has been supported by the Open Fund of Magnetic Confinement Laboratory of Anhui Province (No. 2023AMF03005), the China Postdoctoral Science Foundation (No. 2021M703256), the Director Funding of Hefei Institutes of Physical Science, Chinese Academy of Sciences (No. YZJJ2022QN16), the National Key R&D Program of China (Nos. 2022YFE03050003, 2019YFE03080200, 2019YFE03040002, and 2022YFE03070004), National Natural Science Foundation of China (Nos. 12075284, 12175277, 12275315 and 12275311), the National Magnetic Confinement Fusion Science Program of China (No. 2022YFE03040001) and the Science Foundation of the Institute of Plasma Physics, Chinese Academy of Sciences (No. DSJJ-2021-08).
[1] |
Wilson J I B 2012 Contemp. Phys. 53 450
|
[2] |
Halpern F D, Bateman G and Kritz A H 2006 Phys. Plasmas 13 062510 doi: 10.1063/1.2205829
|
[3] |
Hazeltine R D, Helander P and Catto P J 1997 Phys. Plasmas 4 2920 doi: 10.1063/1.872423
|
[4] |
Sauter O et al 1997 Phys. Plasmas 4 1654 doi: 10.1063/1.872270
|
[5] |
Buttery R J et al 2000 Plasma Phys. Control. Fusion 42 B61 doi: 10.1088/0741-3335/42/12B/306
|
[6] |
Gao X et al 2020 Nucl. Fusion 60 102001 doi: 10.1088/1741-4326/abaa91
|
[7] |
Foley E L et al 2008 Rev. Sci. Instrum. 79 10F521 doi: 10.1063/1.2957776
|
[8] |
Muscatello C M et al 2020 Nucl. Fusion 60 066005 doi: 10.1088/1741-4326/ab7e46
|
[9] |
Clairet F et al 2017 Rev. Sci. Instrum. 88 113506 doi: 10.1063/1.4991789
|
[10] |
Vermare L et al 2005 Plasma Phys. Control. Fusion 47 1895 doi: 10.1088/0741-3335/47/11/003
|
[11] |
Huang S J and Li F 2004 Int. J. Infrared Milli. 25 815 doi: 10.1023/B:IJIM.0000027582.30125.16
|
[12] |
Heuraux S et al 2010 IEEE Trans. Plasma Sci. 38 2150 doi: 10.1109/TPS.2010.2057261
|
[13] |
Morales R B et al 2020 Plasma Sci. Technol. 22 064005 doi: 10.1088/2058-6272/ab7b5a
|
[14] |
da Silva F et al 2003 Rev. Sci. Instrum. 74 1497 doi: 10.1063/1.1530350
|
[15] |
Wen F et al 2019 IEEE Trans. Nucl. Sci. 66 1340 doi: 10.1109/TNS.2019.2912180
|
[16] |
Qu H et al 2015 Plasma Sci. Technol. 17 985 doi: 10.1088/1009-0630/17/12/01
|
[17] |
Zhang S B et al 2014 Plasma Sci. Technol. 16 311 doi: 10.1088/1009-0630/16/4/02
|
[18] |
Wang Y M et al 2013 Fusion Eng. Des. 88 2950 doi: 10.1016/j.fusengdes.2013.06.004
|
[19] |
Wang Y M et al 2019 Fusion Eng. Des. 148 111286 doi: 10.1016/j.fusengdes.2019.111286
|
[20] |
Nishikawa K and Wakatani M, Ideal magnetohydrodynamics In: Nishikawa K and Wakatani M Plasma Physics: Basic Theory with Fusion Applications Berlin, Heidelberg: Springer 2000: 173
|
[21] |
Li E Z et al 2022 Phys. Rev. Lett. 128 085003 doi: 10.1103/PhysRevLett.128.085003
|
[22] |
Sabot R et al 2016 C. R. Phys. 17 1018 doi: 10.1016/j.crhy.2016.07.021
|
[23] |
Li G S et al 2019 Nucl. Fusion 59 096032 doi: 10.1088/1741-4326/ab2a42
|
[24] |
Nicolas T et al 2012 Phys. Plasmas 19 112305 doi: 10.1063/1.4766893
|
[25] |
Wang Z X, Tang W K and Wei L 2022 Plasma Sci. Technol. 24 033001 doi: 10.1088/2058-6272/ac4692
|
[26] |
Zhang Y et al 2021 Nucl. Fusion 61 096028 doi: 10.1088/1741-4326/ac0bfb
|
[27] |
Conway G D et al Locating rational surfaces from reflectometer fluctuations In: Proceedings of the 29th European Physical Society Conference on Plasma Physics and Controlled Fusion. Contributed Papers Geneva: European Physical Society 2002
|
[28] |
Ye K X et al 2021 Rev. Sci. Instrum. 92 043521 doi: 10.1063/5.0035962
|
[29] |
Urano H 2014 Nucl. Fusion 54 116001 doi: 10.1088/0029-5515/54/11/116001
|
[30] |
Chollet F 2017 Deep Learning with Python (Shelter Island: Manning Publications
|
[1] | Xueyun WANG (王雪韵), Zhenyu ZHOU (周振宇), Zhuoyi LI (李卓懿), Bo LI (李博). Dynamical evolution of cross phase of edge fluctuations and transport bifurcation[J]. Plasma Science and Technology, 2021, 23(4): 45102-045102. DOI: 10.1088/2058-6272/abea6f |
[2] | Zhenyu WANG (王振宇), Binhao JIANG (江滨浩), N A STROKIN, A N STUPIN. Study on plasma sheath and plasma transport properties in the azimuthator[J]. Plasma Science and Technology, 2018, 20(4): 45501-045501. DOI: 10.1088/2058-6272/aaa754 |
[3] | NI Gengsong (倪耿松), QIAN Muyang (钱沐杨), YANG Congying (杨丛影), LIU Sanqiu (刘三秋), WANG Dezhen (王德真). N2 Mole Fraction Dependence of Plasma Bullet Propagation in Premixed He/N2 Plasma Needle Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(7): 751-758. DOI: 10.1088/1009-0630/18/7/09 |
[4] | WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06 |
[5] | LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07 |
[6] | ZHOU Xue (周学), CUI Xinglei (崔行磊), CHEN Mo (陈默), ZHAI Guofu (翟国富). Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor[J]. Plasma Science and Technology, 2016, 18(5): 560-568. DOI: 10.1088/1009-0630/18/5/20 |
[7] | SUN Aiping (孙爱萍), DONG Jiaqi (董家齐), CUI Zhengying (崔正英). Transport Simulation of ECRH H-Mode Experiments on HL-2A Tokamak[J]. Plasma Science and Technology, 2015, 17(2): 105-108. DOI: 10.1088/1009-0630/17/2/03 |
[8] | GE Lei(葛蕾), ZHANG Yuantao(张远涛). A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges[J]. Plasma Science and Technology, 2014, 16(10): 924-929. DOI: 10.1088/1009-0630/16/10/05 |
[9] | LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17 |
[10] | DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01 |
1. | Pan, J., Qiao, X., Zhang, C. et al. Stacking Ensemble Learning-Assisted Simulation of Plasma-Catalyzed CO2 Reforming of Methane. Electronics (Switzerland), 2025, 14(7): 1329. DOI:10.3390/electronics14071329 |
2. | Liu, S., Ren, Z., Wang, W. et al. The instability prediction of non-resonant energetic particle modes based on machine learning algorithms. Physica Scripta, 2025, 100(3): 036007. DOI:10.1088/1402-4896/adafe4 |
3. | Yan, X.-T., Bao, N.-N., Zhao, C.-Y. et al. NTVTOK-ML: Fast surrogate model for neoclassical toroidal viscosity torque calculation in tokamaks based on machine learning methods. Computer Physics Communications, 2025. DOI:10.1016/j.cpc.2024.109413 |
4. | Li, H., Wang, L., Fu, Y.L. et al. Surrogate model of turbulent transport in fusion plasmas using machine learning. Nuclear Fusion, 2025, 65(1): 016015. DOI:10.1088/1741-4326/ad8b5b |
5. | Liu, Z.Y., Qiu, H.R., Fu, G.Y. et al. Prediction of fishbone linear instability in tokamaks with machine learning methods. Nuclear Fusion, 2025, 65(1): 016007. DOI:10.1088/1741-4326/ad8d69 |
6. | Xu, J., Luan, Q., Li, H. et al. Neural network based fast prediction of double tearing modes in advanced tokamak plasmas. Physics of Plasmas, 2024, 31(12): 122113. DOI:10.1063/5.0229910 |
7. | Zheng, G.H., Yang, Z.Y., Liu, S.F. et al. Real-time equilibrium reconstruction by multi-task learning neural network based on HL-3 tokamak. Nuclear Fusion, 2024, 64(12): 126041. DOI:10.1088/1741-4326/ad8014 |
8. | Zhang, H., Zhou, L., Liu, Y. et al. Deep learning approaches to recover the plasma current density profile from the safety factor based on Grad-Shafranov solutions across multiple tokamaks. Plasma Science and Technology, 2024, 26(5): 055101. DOI:10.1088/2058-6272/ad13e3 |
9. | Li, G., Li, L., Qiao, X. et al. Research on Machine Learning-Assisted Pulse Discharge Plasma Catalysis for Methane-Carbon Dioxide Simulation. 2024. DOI:10.1109/ICCSNT62291.2024.10776678 |
10. | Liu, Y., Li, J. Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport. Plasma Science and Technology, 2024, 26(1): 015101. DOI:10.1088/2058-6272/ad0c9b |
11. | Li, H., Fu, Y.-L., Li, J.-Q. et al. Simulation Prediction of Heat Transport with Machine Learning in Tokamak Plasmas. Chinese Physics Letters, 2023, 40(12): 125201. DOI:10.1088/0256-307X/40/12/125201 |
12. | Li, H., Li, J.-Q., Wang, Z.-X. Global Effects on Drift Wave Microturbulence in Tokamak Plasmas. Chinese Physics Letters, 2023, 40(10): 105201. DOI:10.1088/0256-307X/40/10/105201 |
13. | Wang, Z., Qiu, Z., Wang, L. et al. Summary of the 10th Conference on Magnetically Confined Fusion Theory and Simulation (CMCFTS). Plasma Science and Technology, 2023, 25(8): 081001. DOI:10.1088/2058-6272/acc14d |
14. | Liang, C., Huang, D., Lu, S. et al. Determining global property of dusty plasma from single particle dynamics using machine learning. Physical Review Research, 2023, 5(3): 033086. DOI:10.1103/PhysRevResearch.5.033086 |
15. | Pan, J., Liu, Y., Zhang, S. et al. Deep learning-assisted pulsed discharge plasma catalysis modeling. Energy Conversion and Management, 2023. DOI:10.1016/j.enconman.2022.116620 |
16. | Zheng, W., Xue, F., Shen, C. et al. Overview of machine learning applications in fusion plasma experiments on J-TEXT tokamak. Plasma Science and Technology, 2022, 24(12): 124003. DOI:10.1088/2058-6272/ac9e46 |
17. | Wai, J.T., Boyer, M.D., Kolemen, E. Neural net modeling of equilibria in NSTX-U. Nuclear Fusion, 2022, 62(8): 086042. DOI:10.1088/1741-4326/ac77e6 |
18. | Wang, T., Li, B., Gao, J. et al. Monitoring of two-dimensional tungsten concentration profiles on the HL-2A tokamak. Plasma Physics and Controlled Fusion, 2022, 64(8): 084003. DOI:10.1088/1361-6587/ac77b9 |
19. | Yang, Y.R., Fu, S.H., Ding, Z.F. Effects of ion extraction on discharges in gridded ion source. AIP Advances, 2022, 12(5): 055325. DOI:10.1063/5.0082813 |
20. | Ida, K., McDermott, R.M., Holland, C. et al. Joint meeting of 9th Asia Pacific-Transport Working Group (APTWG) & EU-US Transport Task Force (TTF) workshop. Nuclear Fusion, 2022, 62(3): 037001. DOI:10.1088/1741-4326/ac3f19 |
21. | Li, H., Li, J.Q., Fu, Y.L. et al. Simulation prediction of micro-instability transition and associated particle transport in tokamak plasmas. Nuclear Fusion, 2022, 62(3): 036014. DOI:10.1088/1741-4326/ac486b |