Advanced Search+
Victor F TARASENKO, Dmitry V BELOPLOTOV, Alexei N PANCHENKO, Dmitry A SOROKIN. Formation of diffuse and spark discharges between two needle electrodes with the scattering of particles[J]. Plasma Science and Technology, 2024, 26(9): 094003. DOI: 10.1088/2058-6272/ad34aa
Citation: Victor F TARASENKO, Dmitry V BELOPLOTOV, Alexei N PANCHENKO, Dmitry A SOROKIN. Formation of diffuse and spark discharges between two needle electrodes with the scattering of particles[J]. Plasma Science and Technology, 2024, 26(9): 094003. DOI: 10.1088/2058-6272/ad34aa

Formation of diffuse and spark discharges between two needle electrodes with the scattering of particles

More Information
  • Author Bio:

    Victor F TARASENKO: VFT@loi.hcei.tsc.ru

  • Corresponding author:

    Victor F TARASENKO, VFT@loi.hcei.tsc.ru

  • Received Date: January 22, 2024
  • Revised Date: March 10, 2024
  • Accepted Date: March 15, 2024
  • Available Online: August 22, 2024
  • Published Date: July 10, 2024
  • The development of a nanosecond discharge in a pin-to-pin gap filled with air at atmospheric pressure has been studied with high temporal and spatial resolutions from a breakdown start to the spark decay. Positive and negative nanosecond voltage pulses with an amplitude of tens of kilovolts were applied. Time-resolved images of the discharge development were taken with a four-channel Intensified Charge Coupled Device (ICCD) camera. The minimum delay between the camera channels could be as short as ≈ 0.1 ns. This made it possible to study the gap breakdown process with subnanosecond resolution. It was observed that a wide-diameter streamer develops from the high-voltage pointed electrode. The ionization processes near the grounded pin electrode started when the streamer crossed half of the gap. After bridging the gap by the streamer, a diffuse discharge was formed. The development of spark leaders from bright spots on the surface of the pointed electrodes was observed at the next stage. It was found that the rate of development of the spark leader is an order of magnitude lower than that of the wide-diameter streamer. Long thin luminous tracks were observed against the background of a discharge plasma glow. It has been established that the tracks are adjacent to brightly glowing spots on the electrodes and are associated with the flight of small particles.

  • This research was performed within the framework of the State assignment of the IHCE SB RAS, project No. FWRM-2021-0014.

  • [1]
    Beilis I 2020 Plasma and Spot Phenomena in Electrical Arcs (Cham: Springer) doi: 10.1007/978-3-030-44747-2
    [2]
    Korsbäck A, Djurabekova F and Wuensch W 2022 AIP Adv. 12 115317 doi: 10.1063/5.0111677
    [3]
    Nefedtsev E V and Onischenko S A Position of erosion marks on the surface of single-crystal and coarse-grained cathodes after a short-pulse vacuum spark In: 29th International Symposium on Discharges and Electrical Insulation in Vacuum Padova: IEEE, 2020: 23 doi: 10.1109/ISDEIV46977.2021.9586987
    [4]
    Nefedtsev E V and Onischenko S A 2022 Tech. Phys. Lett. 48 69 doi: 10.21883/TPL.2022.11.54895.19307
    [5]
    Korolev Y D and Mesyats G A 1982 Field-Emission and Explosive Processes in Gas Discharges (Novosibirsk: Nauka) (in Russian
    [6]
    Tarasenko V et al 2022 Nanomaterials 12 652 doi: 10.3390/nano12040652
    [7]
    Tarasenko V F et al 2023 Surfaces 6 214 doi: 10.3390/surfaces6020014
    [8]
    Kaufmann H T C, Silva C and Benilov M S 2019 Plasma Phys. Control. Fusion 61 095001 doi: 10.1088/1361-6587/ab2fac
    [9]
    Tardiveau P et al 2009 J. Phys. D: Appl. Phys. 42 175202 doi: 10.1088/0022-3727/42/17/175202
    [10]
    Pai D Z, Lacoste D A and Laux C O 2010 Plasma Sources Sci. Technol. 19 065015 doi: 10.1088/0963-0252/19/6/065015
    [11]
    Patel K et al 2022 Appl. Phys. Lett. 120 014101 doi: 10.1063/5.0073630
    [12]
    Starikovskiy A 2011 IEEE Trans. Plasma Sci. 39 2602 doi: 10.1109/TPS.2011.2160738
    [13]
    Lo A et al 2017 Plasma Sources Sci. Technol. 26 045012 doi: 10.1088/1361-6595/aa5c78
    [14]
    Chen X C, Zhu Y F and Wu Y 2020 Plasma Sources Sci. Technol. 29 095006 doi: 10.1088/1361-6595/ab8e4e
    [15]
    Wang L P et al 2023 Plasma Process. Polym. 20 e2300038 doi: 10.1002/ppap.202300038
    [16]
    Zhang B et al 2023 Plasma Sources Sci. Technol. 32 115014 doi: 10.1088/1361-6595/ad085c
    [17]
    Höft H et al 2020 Plasma Sources Sci. Technol. 29 085002 doi: 10.1088/1361-6595/aba112
    [18]
    Efanov V M et al 2010 Ultra-Wideband, Short Pulse Electromagnetics (New York: Springer) USA, 301 https://doi.org/10.3390/plasma2010004
    [19]
    Shao T et al 2012 J. Appl. Phys. 111 023304 doi: 10.1063/1.3677951
    [20]
    Popov N A 2009 Plasma Phys. Rep. 35 436 doi: 10.1134/S1063780X09050092
    [21]
    Bazelyan E M and Raizer Y P 2000 Lightning Physics and Lightning Protection (Boca Raton: CRC Press
    [22]
    Ranucci J et al Pre-breakdown streamer phenomena in CO2, air, and their mixtures, and transition to leader In: 2023 IEEE Conference on Electrical Insulation and Dielectric Phenomena East Rutherford: IEEE 2023: pp 1–4 doi: 10.1109/CEIDP51414.2023.10410469
    [23]
    Tarasenko V et al 2019 Plasma Sci. Technol. 21 044007 doi: 10.1088/2058-6272/ab079b
    [24]
    Chen L et al 2024 J. Phys. D: Appl. Phys. 57 115205 doi: 10.1088/1361-6463/ad146a
    [25]
    Tarasenko V F et al 2018 Plasma Phys. Rep. 44 746 doi: 10.1134/S1063780X18080081
  • Related Articles

    [1]Muhammad Ajmal KHAN, Jing LI (李静), Heping LI (李和平), Hafiz Imran Ahmad QAZI. Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration[J]. Plasma Science and Technology, 2019, 21(5): 55401-055401. DOI: 10.1088/2058-6272/ab004b
    [2]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [3]Cheng ZHANG (章程), Jintao QIU (邱锦涛), Fei KONG (孔飞), Xingmin HOU (侯兴民), Zhi FANG (方志), Yu YIN (殷禹), Tao SHAO (邵涛). Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air[J]. Plasma Science and Technology, 2018, 20(1): 14011-014011. DOI: 10.1088/2058-6272/aa8c6e
    [4]Vadym PRYSIAZHNYI, Pavel SLAVICEK, Eliska MIKMEKOVA, Milos KLIMA. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil[J]. Plasma Science and Technology, 2016, 18(4): 430-437. DOI: 10.1088/1009-0630/18/4/17
    [5]CHANG Zhengshi (常正实), YAO Congwei (姚聪伟), ZHANG Guanjun (张冠军). Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet[J]. Plasma Science and Technology, 2016, 18(1): 17-22. DOI: 10.1088/1009-0630/18/1/04
    [6]JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良), et al.. Atmospheric Pressure Plasma Jet in Ar and O 2 /Ar Mixtures: Properties and High Performance for Surface Cleaning[J]. Plasma Science and Technology, 2013, 15(12): 1203-1208. DOI: 10.1088/1009-0630/15/12/08
    [7]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [8]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [9]Krishnasamy NAVANEETHA PANDIYARAJ, Vengatasamy SELVARAJAN, Rajendrasing R. DESHMUKH, Coimbatore. Paramasivam, et al. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties[J]. Plasma Science and Technology, 2013, 15(1): 56-63. DOI: 10.1088/1009-0630/15/1/10
    [10]LV Xiaogui (吕晓桂), REN Chunsheng (任春生), MA Tengcai (马腾才), Feng Yan (冯岩), WANG Dezhen (王德真). An Atmospheric Large-Scale Cold Plasma Jet[J]. Plasma Science and Technology, 2012, 14(9): 799-801. DOI: 10.1088/1009-0630/14/9/05

Catalog

    Figures(6)

    Article views (23) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return