Citation: | Guangzhou HAO, Jianqiang XU, Youwen SUN, Zhibin GUO, Organizing Committee of the 11th Conference on Magnetic Confined Fusion Theory and Simulation. Summary of the 11th Conference on Magnetic Confined Fusion Theory and Simulation[J]. Plasma Science and Technology, 2024, 26(10): 101001. DOI: 10.1088/2058-6272/ad5d8a |
This conference report summarizes recent progress in plasma theory and simulation that was presented in contributed papers and discussions at the 11th Conference on Magnetic Confined Fusion Theory and Simulation (CMCFTS) held in Chengdu, China, 27–30 October, 2023. Progress in various fields has been achieved. For example, results on zonal flow generation by mode coupling, simulations of the key physics of divertor detachment, energetic particle effects on magnetohydrodynamic (MHD) modes in addition to ion- and electron-scale turbulence, physics of edge coherent modes and edge-localized modes, and the optimization of ion heating schemes as well as confinement scenarios using advanced integrated modeling are presented at the conference. In this conference, the scientific research groups were organized into six categories: (a) edge and divertor physics; (b) impurity, heating, and current drive; (c) energetic particle physics; (d) turbulent transport; (e) MHD instability; and (f) integrated modeling and code development. A summary of the highlighted progress in these working groups is presented.
The co-executive chairmen of the 11th Conference on Magnetic Confined Fusion Theory and Simulation (CMCFTS) (Guangzhou Hao, Youwen Sun, and Zhibin Guo) express their gratitude to the helpful support from the CMCFTS committee members and the local organizers (Professors Xuru Duan and Wulyu Zhong and the conference volunteers), who made significant efforts that led to the success of the 11th CMCFTS. The sponsors of the conference were the Plasma Physics Branch of the Chinese Physical Society, the Nuclear Fusion and Plasma Physics Branch of the Chinese Nuclear Society, and the Theory and Simulation Project Group of the National Magnetic Confinement Fusion Energy Research and Development Program of China. The organizer sponsors of the conference were the Southwestern Institute of Physics and China National Nuclear Corporation.
[1] |
ITER NEWSLINE: MIESTONE FOR CHINA’S HL-3 DEVICE, 2023, Sep.11. https://www.iter.org/newsline/-/3921
|
[2] |
Song Y T et al 2023 Sci. Adv. 9 eabq5273 doi: 10.1126/sciadv.abq5273
|
[3] |
Zhang Y et al 2024 Nucl. Fusion 64 076016 doi: 10.1088/1741-4326/ad4807
|
[4] |
Ding B J et al 2024 Nucl. Fusion 64 074003 doi: 10.1088/1741-4326/ad4806
|
[5] |
Wang S J, Wang Z H and Wu T N et al 2024 Phys. Rev. Lett. 132 065106 doi: 10.1103/PhysRevLett.132.065106
|
[6] |
Wang X et al 2023 Nucl. Fusion 63 096023 doi: 10.1088/1741-4326/aceb77
|
[7] |
Zhang W et al 2019 Plasma Phys. Control. Fusion 61 075002 doi: 10.1088/1361-6587/ab16ae
|
[8] |
Chen W et al 2022 Fundam. Res. 2 667 doi: 10.1016/j.fmre.2021.12.011
|
[9] |
Shi P W et al 2021 Chin. Phys. Lett. 38 035202 doi: 10.1088/0256-307X/38/3/035202
|
[10] |
Yu L M et al 2022 EPL 138 54002 doi: 10.1209/0295-5075/ac3ccf
|
[11] |
Chen W et al 2019 Nucl. Fusion 59 096037 doi: 10.1088/1741-4326/ab2bc6
|
[12] |
Zhu X L et al 2023 Nucl. Fusion 63 036014 doi: 10.1088/1741-4326/acb221
|
[13] |
Lin Z et al 1998 Science 281 1835 doi: 10.1126/science.281.5384.1835
|
[14] |
Zhuang G et al 2019 Nucl. Fusion 59 112010 doi: 10.1088/1741-4326/ab0e27
|
[15] |
Wang X Q et al 2021 Nucl. Fusion 61 036021 doi: 10.1088/1741-4326/abd3ec
|
[16] |
Jian X et al 2023 Phys. Rev. Lett. 131 145101 doi: 10.1103/PhysRevLett.131.145101
|
[17] |
Wang W et al 2020 Nucl. Fusion 60 066010 doi: 10.1088/1741-4326/ab7892
|
[18] |
Zhou Y et al 2023 Phys. Plasmas 30 032503 doi: 10.1063/5.0136654
|
[19] |
Dong G Q et al 2023 Phys. Plasmas 30 072104 doi: 10.1063/5.0149526
|
[20] |
Hussain M S et al 2021 Plasma Phys. Control. Fusion 63 075010 doi: 10.1088/1361-6587/abf85f
|
[21] |
Hussain M S et al 2022 Nucl. Fusion 62 056013 doi: 10.1088/1741-4326/ac4db8
|
[22] |
Li M H et al 2022 Nucl. Fusion 62 126055 doi: 10.1088/1741-4326/ac99ed
|
[23] |
Pan C K 2023 Nucl. Fusion 63 046021 doi: 10.1088/1741-4326/acbc36
|
[24] |
Piras F et al 2010 Phys. Rev. Lett. 105 155003 doi: 10.1103/PhysRevLett.105.155003
|
[25] |
Ma J F et al 2014 Nucl. Fusion 54 033011 doi: 10.1088/0029-5515/54/3/033011
|
[26] |
Ishizawa A et al 2007 Nucl. Fusion 47 1540 doi: 10.1088/0029-5515/47/11/016
|
[27] |
Meng L Y et al 2022 Nucl. Fusion 62 086027 doi: 10.1088/1741-4326/ac74cf
|
[28] |
Li K et al 2023 Nucl. Fusion 63 026025 doi: 10.1088/1741-4326/acae36
|
[29] |
Ma H C et al 2023 Phys. Scr. 98 115608 doi: 10.1088/1402-4896/acff49
|
[30] |
Zhang D R et al 2019 Comput. Phys. Commun. 239 126 doi: 10.1016/j.cpc.2018.12.021
|
[31] |
Zhang D R et al 2020 Nucl. Fusion 60 106015 doi: 10.1088/1741-4326/abaa90
|
[32] |
Ou J et al 2024 Phys. Plasmas 31 043506 doi: 10.1063/5.0195364
|
[33] |
Zhou Y L et al 2022 Plasma Phys. Control. Fusion 64 065006 doi: 10.1088/1361-6587/ac6827
|
[34] |
Zhang C et al 2022 Nucl. Fusion 62 076012 doi: 10.1088/1741-4326/ac65a1
|
[35] |
Niu G J et al 2023 Nucl. Fusion 63 066036 doi: 10.1088/1741-4326/accfad
|
[36] |
Wu T et al 2023 Plasma Sci. Technol. 25 015102 doi: 10.1088/2058-6272/ac82df
|
[37] |
Zou Q et al 2023 Nucl. Fusion 63 126029 doi: 10.1088/1741-4326/acfdb8
|
[38] |
Sun Y et al 2016 Phys. Rev. Lett. 117 115001 doi: 10.1103/PhysRevLett.117.115001
|
[39] |
Xie P et al 2023 Nucl. Fusion 63 096025 doi: 10.1088/1741-4326/aceb07
|
[40] |
Zhang J H et al 2022 Nucl. Fusion 62 076032 doi: 10.1088/1741-4326/ac5451
|
[41] |
Myra J R et al 2021 J. Plasma Phys. 87 905870504 doi: 10.1017/S0022377821000878
|
[42] |
Wu X S et al 2023 Nucl. Fusion 63 106015 doi: 10.1088/1741-4326/acf231
|
[43] |
Shi Y J et al 2022 Nucl. Fusion 62 086047 doi: 10.1088/1741-4326/ac71b6
|
[44] |
Tao Y Q et al 2023 Nucl. Fusion 63 076008 doi: 10.1088/1741-4326/acd014
|
[45] |
Li D H et al 2016 Phys. Plasmas 23 072120 doi: 10.1063/1.4959811
|
[46] |
Yang K R et al 2022 Nucl. Fusion 62 096019 doi: 10.1088/1741-4326/ac8010
|
[47] |
Xu J Q et al 2023 Nucl. Fusion 63 126026 doi: 10.1088/1741-4326/acfd3f
|
[48] |
Xie H S et al 2023 Plasma Phys. Control. Fusion 65 055019 doi: 10.1088/1361-6587/acc8f9
|
[49] |
Liu L Z et al 2023 Nucl. Fusion 63 104004 doi: 10.1088/1741-4326/acf32a
|
[50] |
Bao J et al 2023 Nucl. Fusion 63 076021 doi: 10.1088/1741-4326/acd1a0
|
[51] |
Chen Z et al 2024 Nucl. Fusion 64 036009 doi: 10.1088/1741-4326/ad1faa
|
[52] |
Kong H Z et al 2024 Plasma Phys. Control. Fusion 66 015009 doi: 10.1088/1361-6587/ad1008
|
[53] |
Albanese R et al 2017 Fusion Eng. Des. 122 274 doi: 10.1016/j.fusengdes.2016.12.030
|
[54] |
Zonca F et al 2015 New J. Phys. 17 013052 doi: 10.1088/1367-2630/17/1/013052
|
[55] |
Falessi M V et al 2019 Phys. Plasmas 26 022305 doi: 10.1063/1.5063874
|
[56] |
Zheng Y F et al 2023 Nucl. Fusion 63 046016 doi: 10.1088/1741-4326/acbdad
|
[57] |
Ye L et al 2016 J. Comput. Phys. 316 180 doi: 10.1016/j.jcp.2016.03.068
|
[58] |
Xie B Y et al 2023 Nucl. Fusion 63 026017 doi: 10.1088/1741-4326/acadf1
|
[59] |
Li J C et al 2023 Nucl. Fusion 63 096005 doi: 10.1088/1741-4326/ace461
|
[60] |
Kong W et al 2023 Phys. Plasmas 30 052108 doi: 10.1063/5.0149450
|
[61] |
Wang F et al 2021 Chin. Phys. Lett. 38 55201 doi: 10.1088/0256-307X/38/5/055201
|
[62] |
Hoelzl M et al 2021 Nucl. Fusion 61 065001 doi: 10.1088/1741-4326/abf99f
|
[63] |
Hu D et al 2023 Nucl. Fusion 63 066008 doi: 10.1088/1741-4326/acc8e9
|
[64] |
Chen L et al 2000 Phys. Plasmas 7 3129 doi: 10.1063/1.874222
|
[65] |
Zhang Y et al 2023 Phys. Plasmas 30 092103 doi: 10.1063/5.0161167
|
[66] |
Li L et al 2020 Nucl. Fusion 60 016013 doi: 10.1088/1741-4326/ab4443
|
[67] |
Lu X Q et al 2024 Nucl. Fusion 64 016020 doi: 10.1088/1741-4326/ad0dd8
|
[68] |
Jardin S et al 2012 Comput. Sci. Discovery. 6 014002
|
[69] |
Zhao C et al 2020 Nucl. Fusion 60 126017 doi: 10.1088/1741-4326/ab96f4
|
[70] |
Wan L W et al 2022 Chin. Phys. Lett. 39 115202 doi: 10.1088/0256-307X/39/11/115202
|
[71] |
Xia T Y et al 2013 Nucl. Fusion 53 073009 doi: 10.1088/0029-5515/53/7/073009
|
[72] |
Zhang W M et al 2022 Phys. Scr. 97 045604 doi: 10.1088/1402-4896/ac5696
|
[73] |
Meng C and Guo Z B 2023 Phys. Rev. E 108 065109 doi: 10.1103/PhysRevE.108.065109
|
[74] |
Sang C F et al Modelling of the effects of drifts on the tungsten impurity transport and core accumulation on east by developing a kinetic impurity transport code In: 29th IAEA Fusion Energy Conference London: IAEA 2023 https://www.iaea.org/sites/default/files/23/10/cn-316_fec_preliminary_program.pdf
|
[75] |
Lao L L et al 1985 Nucl. Fusion 25 1611 doi: 10.1088/0029-5515/25/11/007
|
[76] |
Artaud J F et al 2018 Nucl. Fusion 58 105001 doi: 10.1088/1741-4326/aad5b1
|
[77] |
Hu Y M et al 2024 Plasma Sci. Technol. 26 025102 doi: 10.1088/2058-6272/ad0c98
|
[78] |
Chen W J et al 2022 Plasma Sci. Technol. 24 035101 doi: 10.1088/2058-6272/ac48de
|
[79] |
Lan H et al 2023 Plasma Sci. Technol. 25 075105 doi: 10.1088/2058-6272/acbef5
|
[80] |
Yang G M et al 2023 Plasma Sci. Technol. 25 055102 doi: 10.1088/2058-6272/acab43
|
[81] |
Wang Z B et al 2023 Plasma Sci. Technol. 25 081001 doi: 10.1088/2058-6272/acc14d
|
[1] | Changle LIU, Lei LI, Yanzi HE, Peng ZHANG, Yu ZHOU, Jun SONG, Songtao WU. An innovative approach to effective breeding blanket design for future fusion reactors[J]. Plasma Science and Technology, 2024, 26(10): 105601. DOI: 10.1088/2058-6272/ad5a66 |
[2] | Zhongtian WANG (王中天), Huidong LI (李会东), Xueke WU (吴雪科). Loss-cone instabilities for compact fusion reactor and field-reversed configuration[J]. Plasma Science and Technology, 2019, 21(2): 25101-025101. DOI: 10.1088/2058-6272/aaead9 |
[3] | Dongye ZHAO (赵栋烨), Cong LI (李聪), Yong WANG (王勇), Zhiwei WANG (王志伟), Liang GAO (高亮), Zhenhua HU (胡振华), Jing WU (吴婧), Guang-Nan LUO (罗广南), Hongbin DING (丁洪斌). Temporal and spatial dynamics of optical emission from laser ablation of the first wall materials of fusion device[J]. Plasma Science and Technology, 2018, 20(1): 14022-014022. DOI: 10.1088/2058-6272/aa96a0 |
[4] | Shanwen ZHANG (张善文), Yuntao SONG (宋云涛), Linlin TANG (汤淋淋), Zhongwei WANG (王忠伟), Xiang JI (戢翔), Shuangsong DU (杜双松). Electromagnetic–thermal–structural coupling analysis of the ITER edge localized mode coil with fiexible supports[J]. Plasma Science and Technology, 2017, 19(5): 55601-055601. DOI: 10.1088/2058-6272/aa57f4 |
[5] | Hantian ZHANG (张含天), Tianwei LI (厉天威), Bing LUO (罗兵), Yi WU (吴翊), Fei YANG (杨飞), Hao SUN (孙昊), Li TANG (唐力). Influence of the gassing materials on the dielectric properties of air[J]. Plasma Science and Technology, 2017, 19(5): 55504-055504. DOI: 10.1088/2058-6272/aa57f5 |
[6] | ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11 |
[7] | WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03 |
[8] | YANG Yu (杨愚), S. MARUYAMA, A. FOSSEN, F. VILLERS, G. KISS, ZHANG Bo (张博), LI Bo (李波), JIANG Tao (江涛), HUANG Xiangmei (黄向玫). Nuclear Safety Functions of ITER Gas Injection System Instrumentation and Control and the Concept Design[J]. Plasma Science and Technology, 2016, 18(8): 875-878. DOI: 10.1088/1009-0630/18/8/15 |
[9] | ZHAO Dongye(赵栋烨), FARID Nazar(纳扎), HAI Ran(海然), WU Ding(吴鼎), DING Hongbin(丁洪斌). Diagnostics of First Wall Materials in a Magnetically Confined Fusion Device by Polarization-Resolved Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2014, 16(2): 149-154. DOI: 10.1088/1009-0630/16/2/11 |
[10] | HAO Junchuan (郝俊川), SONG Yuntao (宋云涛), WANG Xiaoyu (王晓宇), K. IOKI, DU Shuangsong (杜双松), JI Xiang (戢翔), FENG Changle (冯昌乐), XU Yang (徐扬). Static Structural Analysis for a Neutron Shielding Block in ITER[J]. Plasma Science and Technology, 2013, 15(2): 142-147. DOI: 10.1088/1009-0630/15/2/13 |