Advanced Search+
Jingwen FAN, Huijie YAN, Ting LI, Yurong MAO, Jiaqi LI, Jian SONG. Surface charge characteristics in a three-electrode surface dielectric barrier discharge[J]. Plasma Science and Technology, 2024, 26(11): 115403. DOI: 10.1088/2058-6272/ad7821
Citation: Jingwen FAN, Huijie YAN, Ting LI, Yurong MAO, Jiaqi LI, Jian SONG. Surface charge characteristics in a three-electrode surface dielectric barrier discharge[J]. Plasma Science and Technology, 2024, 26(11): 115403. DOI: 10.1088/2058-6272/ad7821

Surface charge characteristics in a three-electrode surface dielectric barrier discharge

More Information
  • Author Bio:

    Huijie YAN: yanhuijie@dlut.edu.cn

  • Corresponding author:

    Huijie YAN, yanhuijie@dlut.edu.cn

  • Received Date: March 11, 2024
  • Revised Date: September 01, 2024
  • Accepted Date: September 06, 2024
  • Available Online: September 07, 2024
  • Published Date: October 01, 2024
  • The surface charge characteristics in a three-electrode surface dielectric barrier discharge (SDBD) are experimentally investigated based on the Pockels effect of an electro-optical crystal. The actuator is based on the most commonly used SDBD structure for airflow control, with an exposed electrode supplied with sinusoidal AC high voltage, a grounded encapsulated electrode and an additional exposed electrode downstream supplied with DC voltage. The ionic wind velocity and thrust can be significantly improved by increasing DC voltage although the plasma discharge characteristics are virtually unaffected. It is found that the negative charges generated by the discharge of the three-electrode structure accumulate on the dielectric surface significantly further downstream in an AC period compared to the actuator with a two-electrode structure. The negative charges in the downstream region increase as the DC voltage increases. In addition, the DC voltage affects the time required for the positive charge filaments to decay. The positive DC voltage expands the ionic acceleration zone downstream to produce a greater EHD force. The amplitude of the DC voltage affects the electric field on the dielectric surface and is therefore a key factor in the formation of the EHD force. Further research on the surface charge characteristics of a three-electrode structure has been conducted using a pulse power to drive the discharge, and the same conclusions are drawn. This work demonstrates a link between surface charge characteristics and EHD performance of a three-electrode SDBD actuator.

  • This work was supported by National Natural Science Foundation of China (Nos. 51777026 and 11705075).

  • [1]
    Schatzman D M and Thomas F O 2010 AIAA J. 48 1620 doi: 10.2514/1.J050009
    [2]
    Roth J R, Sherman D M and Wilkinson S P 2000 AIAA J. 38 1166 doi: 10.2514/2.1110
    [3]
    Grundmann S and Tropea C 2007 Exp. Fluids 42 653 doi: 10.1007/s00348-007-0256-8
    [4]
    Mahdavi H and Sohbatzadeh F 2019 Phys. Scr. 94 085204 doi: 10.1088/1402-4896/ab0e17
    [5]
    Abe T et al 2008 AIAA J. 46 2248 doi: 10.2514/1.30985
    [6]
    Qi X H et al 2016 Plasma Sci. Technol. 18 1005 doi: 10.1088/1009-0630/18/10/07
    [7]
    Hoskinson A R, Hershkowitz N and Ashpis D E 2008 J. Phys. D: Appl. Phys. 41 245209 doi: 10.1088/0022-3727/41/24/245209
    [8]
    Debien A, Benard N and Moreau E 2012 J. Phys. D: Appl. Phys. 45 215201 doi: 10.1088/0022-3727/45/21/215201
    [9]
    Benard N and Moreau E 2012 Appl. Phys. Lett. 100 193503 doi: 10.1063/1.4712125
    [10]
    Yan H J et al 2016 J. Phys. D: Appl. Phys. 49 295203 doi: 10.1088/0022-3727/49/29/295203
    [11]
    McGowan R et al 2016 Pulsed-DC plasma actuator characteristics and application in compressor stall control In: Proceedings of 2016 54th AIAA Aerospace Sciences Meeting San Diego: California, USA doi: 10.2514/6.2016-0394
    [12]
    Moreau E, Sosa R and Artana G 2008 J. Phys. D: Appl. Phys. 41 115204 doi: 10.1088/0022-3727/41/11/115204
    [13]
    Cristofolini A, Neretti G and Borghi C A 2013 J. Appl. Phys. 114 073303 doi: 10.1063/1.4817378
    [14]
    Soloviev V R 2012 J. Phys. D: Appl. Phys. 45 025205 doi: 10.1088/0022-3727/45/2/025205
    [15]
    Kim W et al 2007 Appl. Phys. Lett. 91 181501 doi: 10.1063/1.2803755
    [16]
    Deng J B et al 2010 J. Phys. D: Appl. Phys. 43 495203 doi: 10.1088/0022-3727/43/49/495203
    [17]
    Ren C H et al 2023 Plasma Sources Sci. Technol. 32 025004 doi: 10.1088/1361-6595/acb4b9
    [18]
    Pan C et al 2020 IEEE Trans. Dielectr. Electr. Insul. 27 1951 doi: 10.1109/TDEI.2020.008960
    [19]
    Stollenwerk L, Laven J G and Purwins H G 2007 Phys. Rev. Lett. 98 255001 doi: 10.1103/PhysRevLett.98.255001
    [20]
    Wild R, Benduhn J and Stollenwerk L 2014 J. Phys. D: Appl. Phys. 47 435204 doi: 10.1088/0022-3727/47/43/435204
    [21]
    Dosoudilová L et al 2015 J. Phys. D: Appl. Phys. 48 355204 doi: 10.1088/0022-3727/48/35/355204
    [22]
    Tschiersch R, Bogaczyk M and Wagner H E 2014 J. Phys. D: Appl. Phys. 47 365204 doi: 10.1088/0022-3727/47/36/365204
    [23]
    Zhang B et al 2021 High Volt. 6 608 doi: 10.1049/hve2.12073
    [24]
    Takeuchi N et al 2011 J. Electrost. 69 87 doi: 10.1016/j.elstat.2011.01.001
    [25]
    Mitsuhashi K et al 2021 Plasma Sources Sci. Technol. 30 04LT02 doi: 10.1088/1361-6595/abefa7
    [26]
    Sato S et al 2021 J. Phys. D: Appl. Phys. 54 455203 doi: 10.1088/1361-6463/ac1b5d
    [27]
    Yu S Q et al 2022 J. Phys. D: Appl. Phys. 55 125201 doi: 10.1088/1361-6463/ac4184
    [28]
    Li T et al 2022 Plasma Sources Sci. Technol. 31 055016 doi: 10.1088/1361-6595/ac676e
    [29]
    Li J Q et al 2023 J. Appl. Phys. 133 063301 doi: 10.1063/5.0134362
    [30]
    Yan H J et al 2015 J. Appl. Phys. 117 063302 doi: 10.1063/1.4907992
    [31]
    Boeuf J P et al 2007 J. Phys. D: Appl. Phys. 40 652 doi: 10.1088/0022-3727/40/3/S03
    [32]
    Soloviev V R and Krivtsov V M 2009 J. Phys. D: Appl. Phys. 42 125208 doi: 10.1088/0022-3727/42/12/125208
    [33]
    Gibalov V I and Pietsch G J 2012 Plasma Sources Sci. Technol. 21 024010 doi: 10.1088/0963-0252/21/2/024010
  • Related Articles

    [1]Muhammad Ajmal KHAN, Jing LI (李静), Heping LI (李和平), Hafiz Imran Ahmad QAZI. Characteristics of a radio-frequency cold atmospheric plasma jet produced with a hybrid cross-linear-field electrode configuration[J]. Plasma Science and Technology, 2019, 21(5): 55401-055401. DOI: 10.1088/2058-6272/ab004b
    [2]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [3]Cheng ZHANG (章程), Jintao QIU (邱锦涛), Fei KONG (孔飞), Xingmin HOU (侯兴民), Zhi FANG (方志), Yu YIN (殷禹), Tao SHAO (邵涛). Plasma surface treatment of Cu by nanosecond-pulse diffuse discharges in atmospheric air[J]. Plasma Science and Technology, 2018, 20(1): 14011-014011. DOI: 10.1088/2058-6272/aa8c6e
    [4]Vadym PRYSIAZHNYI, Pavel SLAVICEK, Eliska MIKMEKOVA, Milos KLIMA. Influence of Chemical Precleaning on the Plasma Treatment Efficiency of Aluminum by RF Plasma Pencil[J]. Plasma Science and Technology, 2016, 18(4): 430-437. DOI: 10.1088/1009-0630/18/4/17
    [5]CHANG Zhengshi (常正实), YAO Congwei (姚聪伟), ZHANG Guanjun (张冠军). Non-Thermal Equilibrium Atmospheric Pressure Glow-Like Discharge Plasma Jet[J]. Plasma Science and Technology, 2016, 18(1): 17-22. DOI: 10.1088/1009-0630/18/1/04
    [6]JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良), et al.. Atmospheric Pressure Plasma Jet in Ar and O 2 /Ar Mixtures: Properties and High Performance for Surface Cleaning[J]. Plasma Science and Technology, 2013, 15(12): 1203-1208. DOI: 10.1088/1009-0630/15/12/08
    [7]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [8]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [9]Krishnasamy NAVANEETHA PANDIYARAJ, Vengatasamy SELVARAJAN, Rajendrasing R. DESHMUKH, Coimbatore. Paramasivam, et al. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties[J]. Plasma Science and Technology, 2013, 15(1): 56-63. DOI: 10.1088/1009-0630/15/1/10
    [10]LV Xiaogui (吕晓桂), REN Chunsheng (任春生), MA Tengcai (马腾才), Feng Yan (冯岩), WANG Dezhen (王德真). An Atmospheric Large-Scale Cold Plasma Jet[J]. Plasma Science and Technology, 2012, 14(9): 799-801. DOI: 10.1088/1009-0630/14/9/05

Catalog

    Figures(25)  /  Tables(1)

    Article views (33) PDF downloads (13) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return