Advanced Search+
Feng LIU (刘峰), Yue ZHUANG (庄越), Haijing CHU (储海靖), Zhi FANG (方志), Wenchun WANG (王文春). The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry[J]. Plasma Science and Technology, 2021, 23(6): 64002-064002. DOI: 10.1088/2588-6272/abe3e1
Citation: Feng LIU (刘峰), Yue ZHUANG (庄越), Haijing CHU (储海靖), Zhi FANG (方志), Wenchun WANG (王文春). The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry[J]. Plasma Science and Technology, 2021, 23(6): 64002-064002. DOI: 10.1088/2588-6272/abe3e1

The investigation of OH radicals produced in a DC glow discharge by laser-induced fluorescence spectrometry

Funds: This work is supported by National Natural Science Foundation of China (No. 51777091), Innovative Talents Team Project of 'Six Talent Peaks' of Jiangsu Province (No. TDJNHB- 006), and Postgraduate Research & Practice Innovation Program of Jiangsu Province in China (No. SJCX20_0345).
More Information
  • Received Date: November 24, 2020
  • Revised Date: January 29, 2021
  • Accepted Date: February 04, 2021
  • In this paper the OH radicals produced by a needle–plate negative DC discharge in water vapor, N2+H2O mixture gas and He+H2O mixture gas are investigated by a laser-induced fluorescence (LIF) system. With a ballast resistor in the circuit, the discharge current is limited and the discharges remain in glow. The OH rotation temperature is obtained from fluorescence rotational branch fitting, and is about 350 K in pure water vapor. The effects of the discharge current and gas pressure on the production and quenching processes of OH radicals are investigated. The results show that in water vapor and He+H2O mixture gas the fluorescence intensity of OH stays nearly constant with increasing discharge current, and in N2+H2O mixture gas the fluorescence intensity of OH increases with increasing discharge current. In water vapor and N2+H2O mixture gas the fluorescence intensity of OH decreases with increasing gas pressure in the studied pressure range, and in He+H2O mixture gas the fluorescence intensity of OH shows a maximum value within the studied gas pressure range. The physicochemical reactions between electrons, radicals, ground and metastable molecules are discussed. The results in this work contribute to the optimization of plasma reactivity and the establishment of a molecule reaction dynamics model.
  • [1]
    Kim K N et al 2016 Thin Solid Films 598 315
    [2]
    Wu S L et al 2020 High Voltage 5 15
    [3]
    Shan M L et al 2019 Plasma Sci. Technol. 21 074002
    [4]
    Tu X et al 2011 J. Phys. D: Appl. Phys. 44 274007
    [5]
    Laroussi M, Lu X and Keidar M 2017 J. Appl. Phys. 122 020901
    [6]
    Fridman G et al 2008 Plasma Process. Polym. 5 503
    [7]
    Lu X et al 2016 Phys. Rep. 630 1
    [8]
    Adamovich I et al 2017 J. Phys. D: Appl. Phys. 50 323001
    [9]
    Shao T et al 2018 High Voltage 3 14
    [10]
    Liu F et al 2008 Spectrochim. Acta A 69 776
    [11]
    Yang D Z et al 2012 Plasma Sources Sci. Technol. 21 035004
    [12]
    Xu N et al 2018 IEEE Trans. Plasma Sci. 46 947
    [13]
    Singh R, Gangal U and Gupta S K S 2012 Plasma Chem. Plasma Process. 32 609
    [14]
    Chen Y and Jin X L 2019 Electrochim. Acta 296 379
    [15]
    Wang Y X et al 2019 J. Electrostat. 98 82
    [16]
    Ajo P, Kornev I and Preis S 2017 Sci. Rep. 7 16152
    [17]
    Wu W W et al 2015 IEEE Trans. Plasma Sci. 43 3979
    [18]
    Zhang H et al 2016 Plasma Chem. Plasma Process. 36 813
    [19]
    Du Y J et al 2017 J. Phys. D: Appl. Phys. 50 145201
    [20]
    Liu F et al 2007 J. Electrostat. 65 445
    [21]
    Dilecce G and De Benedictis S 2011 Plasma Phys. Controlled Fusion 53 124006
    [22]
    Yue Y F et al 2018 Plasma Sources Sci. Technol. 27 064001
    [23]
    Liu F et al 2007 Eur. Phys. J. D 42 435
    [24]
    Liu F et al 2006 Plasma Chem. Plasma Process. 26 469
    [25]
    Yang G D et al 2008 Plasma Chem. Plasma Process. 28 317
    [26]
    Liu F et al 2017 Plasma Sci. Technol. 19 064008
    [27]
    Dilecce G et al 2012 Chem. Phys. 398 142
    [28]
    Sainct F P et al 2014 J. Phys. D: Appl. Phys. 47 075204
    [29]
    Ono R and Oda T 2008 J. Phys. D: Appl. Phys. 41 035204
    [30]
    Ono R and Tokuhiro M 2020 Plasma Sources Sci. Technol. 29 035021
    [31]
    Wu S Q et al 2018 Phys. Plasmas 25 123507
    [32]
    Li X C et al 2013 Plasma Sci. Technol. 15 1149
    [33]
    Liu F et al 2018 IEEE Trans. Plasma Sci. 46 3194
    [34]
    Liu F, Huang G and Ganguly B 2010 Plasma Sources Sci. Technol. 19 045017
    [35]
    Jiang C and Carter C 2014 Plasma Sources Sci. Technol. 23 065006
    [36]
    Yonemori S et al 2012 J. Phys. D: Appl. Phys. 45 225202
    [37]
    Ono R 2016 J. Phys. D: Appl. Phys. 49 083001
    [38]
    Kanazawa S et al 2020 J. Electrostat. 103 103419
    [39]
    Wang Y et al 2016 IEEE Trans. Plasma Sci. 44 2796
    [40]
    Ichikawa Y et al 2010 Japan. J. Appl. Phys. 49 106101
    [41]
    Pintassilgo C D et al 2010 Plasma Sources Sci. Technol. 19 055001
  • Related Articles

    [1]Tianbao MA, Yauheni KALENKOVICH, Valeriy ROKACH, Anatoly OSIPOV. Generation of low-temperature plasma by pulse-width modulated signals and monitoring of the interaction thereof with the surface of objects[J]. Plasma Science and Technology, 2025, 27(1): 015403. DOI: 10.1088/2058-6272/ad8a38
    [2]Jiachen TONG, Haiying LI, Bin XU, Songyang WU, Lu BAI. Excitation and power spectrum analysis of electromagnetic radiation for the plasma wake of reentry vehicles[J]. Plasma Science and Technology, 2023, 25(5): 055301. DOI: 10.1088/2058-6272/aca7ad
    [3]Yaocong XIE, Xiaoping LI, Fangfang SHEN, Bowen BAI, Yanming LIU, Xuyang CHEN, Lei SHI. Analysis of inverse synthetic aperture radar imaging in the presence of time-varying plasma sheath[J]. Plasma Science and Technology, 2022, 24(3): 035002. DOI: 10.1088/2058-6272/ac1d98
    [4]LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
    [5]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07
    [6]WANG Hongyu (王虹宇), JIANG Wei (姜巍), SUN Peng (孙鹏), ZHAO Shuangyun (赵双云), LI Yang (李阳). Modeling of Perpendicularly Driven Dual-Frequency Capacitively Coupled Plasma[J]. Plasma Science and Technology, 2016, 18(2): 143-146. DOI: 10.1088/1009-0630/18/2/08
    [7]SHI Lei (石磊), ZHAO Lei (赵蕾), YAO Bo (姚博), LI Xiaoping (李小平). Telemetry Channel Capacity Assessment for Reentry Vehicles in Plasma Sheath Environment[J]. Plasma Science and Technology, 2015, 17(12): 1006-1012. DOI: 10.1088/1009-0630/17/12/05
    [8]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [9]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [10]WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02

Catalog

    Article views (137) PDF downloads (365) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return