Advanced Search+
ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
Citation: ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07

Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure

More Information
  • Received Date: August 20, 2013
  • The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm
    [(3s 2 3p 5 )5p → (3s 2 3p 5 )4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm
    [(3s 2 3p 5 )4p → (3s 2 3p 5 )4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N 2 (C 3 Π u →B 3 Π g )) to 391.4 nm (N +2 (B 2 Σ+ u →X 2 Σ+ g )). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.
  • 1 Ji L Y, Zhu Y C, Wang H C, et al. 2011, Removal of mixed volatile organic compounds using bipolar pulsed DBD. Second International Conference on Mechanic Automation and Control Engineering, Inner Mongo-lia, China, p. 2429;
    2 Thevenet F, Guaitella O, Puzenat E, et al. 2007, Catal.Today, 122: 186;
    3 Chang C L, Lin T S. 2005, Plasma Chem. Plasma Pro-cess., 25: 227;
    4 Dong B, Bauchire J M, Pouvesle J M, et al. 2008, J.Phys. D: Appl. Phys., 41: 155201;
    5 Gibalov V I, Pietsch G J. 2000, J. Phys. D: Appl.Phys., 33: 2618;
    6 Jolibois J, Zouzou N, Moreau E, et al. 2011, J. Elec-trostat., 69: 522;
    7 Starikovskaia S M, Allegraud K, Guaitella O, et al.2010, J. Phys. D: Appl. Phys., 43: 124007;
    8 Unfer T, Boeuf J P. 2010, Plasma Phys. Control. Fu-sion, 52: 124019;
    9 Allegraud K, Guaitella O, Rousseau A. 2007, J. Phys.D: Appl. Phys., 40: 7698;
    10 Enloe C L, Font G I, McLaughlin T E, et al. 2008,AIAA Journal, 46: 2730;
    11 Kang W S, Park J M, Kim Y, et al. 2003, IEEE Trans-actions on Plasma Science, 31: 504;
    12 Enloe C L, McLaughlin T E, Van Dyken R D, et al.2004, AIAA Journal, 42: 589;
    13 Gibalov V I, Pietsch G J. 2000, J. Phys. D: Appl.Phys., 33: 2618;
    14 Gibalov V I, Pietsch G J. 2004, J. Phys. D: Appl.Phys., 37: 2082;
    15 Kim Y, Hong S H, Cha M S, et al. 2003, Journal of Advanced Oxidation Technologies, 6: 17;
    16 Morgan W L, Penetrante B M. 1990, Comput. Phys. Commun., 58: 127;
    17 Gallimberti I, Hepworth J K, Klewe R C. 1974, J.Phys. D: Appl. Phys., 7: 880;
    18 http://www.nist.gov/pml/data/asd.cfm ;
    19 Otorbaev D K, Buuron A J M, Guerassimov N T, et al.1994, J. Appl. Phys., 76: 4499;
    20 Donnelly V M. 2004, J. Phys. D: Appl. Phys., 37: R217;
    21 Gudmundsson J T, Alami J, Helmersson U. 2001,Appl. Phys. Lett., 78: 3427;
    22 Schabel M J, Donnelly V M, Kornblit A, et al. 2002,J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films,20: 555;
    23 Spyrou N, Manassis C. 1989, J. Phys. D: Appl. Phys.,22: 120;
    24 Gibalov V I, Murata T, Pietsch G J. 2002, Param-eters of barrier discharges in coplanar arrangements.International Symposium on High Pressure Low Tem-perature Plasma Chemistry, Puhajarve Estonia
  • Related Articles

    [1]Weisheng CUI (崔伟胜), Shuai ZHAO (赵帅), Zhengfang QIAN (钱正芳), Yiling SUN (孙一翎), Mahmoud AL-SALIHI, Xiangquan DENG (邓想全). Influence of non-uniform electric field distribution on the atmospheric pressure air dielectric barrier discharge[J]. Plasma Science and Technology, 2021, 23(7): 75402-075402. DOI: 10.1088/2058-6272/abf9fd
    [2]Wenzheng LIU (刘文正), Maolin CHAI (柴茂林), Wenlong HU (胡文龙), Luxiang ZHAO (赵潞翔), Jia TIAN (田甲). Generation of atmospheric pressure diffuse dielectric barrier discharge based on multiple potentials in air[J]. Plasma Science and Technology, 2019, 21(7): 74004-074004. DOI: 10.1088/2058-6272/aafdf8
    [3]Yuhui ZHANG (张雨晖), Wenjun NING (宁文军), Dong DAI (戴栋), Qiao WANG (王乔). Influence of nitrogen impurities on the characteristics of a patterned helium dielectric barrier discharge at atmospheric pressure[J]. Plasma Science and Technology, 2019, 21(7): 74003-074003. DOI: 10.1088/2058-6272/ab10a7
    [4]Mook Tzeng LIM (林木森), Ahmad Zulazlan SHAH ZULKIFLI, Kanesh Kumar JAYAPALAN, Oihoong CHIN. Development of a dimensionless parameter for characterization of dielectric barrier discharge devices with respect to geometrical features[J]. Plasma Science and Technology, 2017, 19(9): 95402-095402. DOI: 10.1088/2058-6272/aa7382
    [5]Hantian ZHANG (张含天), Tianwei LI (厉天威), Bing LUO (罗兵), Yi WU (吴翊), Fei YANG (杨飞), Hao SUN (孙昊), Li TANG (唐力). Influence of the gassing materials on the dielectric properties of air[J]. Plasma Science and Technology, 2017, 19(5): 55504-055504. DOI: 10.1088/2058-6272/aa57f5
    [6]SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01
    [7]WU Zhonghang(吴忠航), LI Zebin(李泽斌), JU Jiaqi(居家奇), HE Kongduo(何孔多), YANG Xilu(杨曦露), YAN Hang(颜航), CHEN Zhenliu(陈枕流), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Experimental Investigation of Surface Wave Plasma Excited by a Cylindrical Dielectric Rod[J]. Plasma Science and Technology, 2014, 16(2): 118-122. DOI: 10.1088/1009-0630/16/2/06
    [8]LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06
    [9]HONG Yi (洪义), LU Na (鲁娜), PAN Jing (潘静), LI Jie (李杰), WU Yan (吴彦). Discharge Characteristics of an Atmospheric Pressure Argon Plasma Jet Generated with Screw Ring-Ring Electrodes in Surface Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2013, 15(8): 780-786. DOI: 10.1088/1009-0630/15/8/12
    [10]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07

Catalog

    Article views (150) PDF downloads (1393) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return