Advanced Search+
ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
Citation: ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07

Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure

More Information
  • Received Date: August 20, 2013
  • The electronic excitation temperature of a surface dielectric barrier discharge (DBD) at atmospheric pressure has been experimentally investigated by optical emission spectroscopic measurements combined with numerical simulation. Experiments have been carried out to deter- mine the spatial distribution of electric field by using FEM software and the electronic excitation temperature in discharge by calculating ratio of two relative intensities of atomic spectral lines. In this work, we choose seven Ar atomic emission lines at 415.86 nm
    [(3s 2 3p 5 )5p → (3s 2 3p 5 )4s] and 706.7 nm, 714.7 nm, 738.4 nm, 751.5 nm, 794.8 nm and 800.6 nm
    [(3s 2 3p 5 )4p → (3s 2 3p 5 )4s] to estimate the excitation temperature under a Boltzmann approximation. The average electron energy is evaluated in each discharge by using line ratio of 337.1 nm (N 2 (C 3 Π u →B 3 Π g )) to 391.4 nm (N +2 (B 2 Σ+ u →X 2 Σ+ g )). Furthermore, variations of the electronic excitation tempera- ture are presented versus dielectric thickness and dielectric materials. The discharge is stable and uniform along the axial direction, and the electronic excitation temperature at the edge of the copper electrode is the largest. The corresponding average electron energy is in the range of 1.6- 5.1 eV and the electric field is in 1.7-3.2 MV/m, when the distance from copper electrode varies from 0 cm to 6 cm. Moreover, the electronic excitation temperature with a higher permittivity leads to a higher dissipated electrical power.
  • 1 Ji L Y, Zhu Y C, Wang H C, et al. 2011, Removal of mixed volatile organic compounds using bipolar pulsed DBD. Second International Conference on Mechanic Automation and Control Engineering, Inner Mongo-lia, China, p. 2429;
    2 Thevenet F, Guaitella O, Puzenat E, et al. 2007, Catal.Today, 122: 186;
    3 Chang C L, Lin T S. 2005, Plasma Chem. Plasma Pro-cess., 25: 227;
    4 Dong B, Bauchire J M, Pouvesle J M, et al. 2008, J.Phys. D: Appl. Phys., 41: 155201;
    5 Gibalov V I, Pietsch G J. 2000, J. Phys. D: Appl.Phys., 33: 2618;
    6 Jolibois J, Zouzou N, Moreau E, et al. 2011, J. Elec-trostat., 69: 522;
    7 Starikovskaia S M, Allegraud K, Guaitella O, et al.2010, J. Phys. D: Appl. Phys., 43: 124007;
    8 Unfer T, Boeuf J P. 2010, Plasma Phys. Control. Fu-sion, 52: 124019;
    9 Allegraud K, Guaitella O, Rousseau A. 2007, J. Phys.D: Appl. Phys., 40: 7698;
    10 Enloe C L, Font G I, McLaughlin T E, et al. 2008,AIAA Journal, 46: 2730;
    11 Kang W S, Park J M, Kim Y, et al. 2003, IEEE Trans-actions on Plasma Science, 31: 504;
    12 Enloe C L, McLaughlin T E, Van Dyken R D, et al.2004, AIAA Journal, 42: 589;
    13 Gibalov V I, Pietsch G J. 2000, J. Phys. D: Appl.Phys., 33: 2618;
    14 Gibalov V I, Pietsch G J. 2004, J. Phys. D: Appl.Phys., 37: 2082;
    15 Kim Y, Hong S H, Cha M S, et al. 2003, Journal of Advanced Oxidation Technologies, 6: 17;
    16 Morgan W L, Penetrante B M. 1990, Comput. Phys. Commun., 58: 127;
    17 Gallimberti I, Hepworth J K, Klewe R C. 1974, J.Phys. D: Appl. Phys., 7: 880;
    18 http://www.nist.gov/pml/data/asd.cfm ;
    19 Otorbaev D K, Buuron A J M, Guerassimov N T, et al.1994, J. Appl. Phys., 76: 4499;
    20 Donnelly V M. 2004, J. Phys. D: Appl. Phys., 37: R217;
    21 Gudmundsson J T, Alami J, Helmersson U. 2001,Appl. Phys. Lett., 78: 3427;
    22 Schabel M J, Donnelly V M, Kornblit A, et al. 2002,J. Vac. Sci. Technol. A: Vacuum, Surfaces, and Films,20: 555;
    23 Spyrou N, Manassis C. 1989, J. Phys. D: Appl. Phys.,22: 120;
    24 Gibalov V I, Murata T, Pietsch G J. 2002, Param-eters of barrier discharges in coplanar arrangements.International Symposium on High Pressure Low Tem-perature Plasma Chemistry, Puhajarve Estonia
  • Related Articles

    [1]Yutong YANG, Yunfeng LIANG, Wei YAN, Shuangbao SHU, Jiankun HUA, Song ZHOU, Qinghu YANG, Jinlong GUO, Ziyang JIN, Wei XIE, the J-TEXT Team. Characteristics of divertor heat flux distribution with an island divertor configuration on the J-TEXT tokamak[J]. Plasma Science and Technology, 2024, 26(12): 125102. DOI: 10.1088/2058-6272/ad6816
    [2]Ruirong LIANG, Xianzu GONG, Bin ZHANG, Zhendong YANG, Manni JIA, Youwen SUN, Qun MA, Jiayuan ZHANG, Yunchan HU, Jinping QIAN, the EAST Team. Study on divertor heat flux under n = 3 and n = 4 resonant magnetic perturbations using infrared thermography diagnostic in EAST[J]. Plasma Science and Technology, 2022, 24(10): 105103. DOI: 10.1088/2058-6272/ac73e6
    [3]Bo SHI (史博), Jinhong YANG (杨锦宏), Cheng YANG (杨程), Desheng CHENG (程德胜), Hui WANG (王辉), Hui ZHANG (张辉), Haifei DENG (邓海飞), Junli QI (祁俊力), Xianzu GONG (龚先祖), Weihua WANG (汪卫华). Double-null divertor configuration discharge and disruptive heat flux simulation using TSC on EAST[J]. Plasma Science and Technology, 2018, 20(7): 74006-074006. DOI: 10.1088/2058-6272/aab48e
    [4]P DREWS, H NIEMANN, J COSFELD, Y GAO, J GEIGER, O GRULKE, M HENKEL, D HÖSCHEN, K HOLLFELD, C KILLER, AKRÄMER-FLECKEN, Y LIANG, S LIU, D NICOLAI, O NEUBAUER, M RACK, B SCHWEER, G SATHEESWARAN, L RUDISCHHAUSER, N SANDRI, N WANG, the W-X Team. Magnetic configuration effects on the edge heat flux in the limiter plasma on W7-X measured using the infrared camera and the combined probe[J]. Plasma Science and Technology, 2018, 20(5): 54003-054003. DOI: 10.1088/2058-6272/aaa968
    [5]GAO Jinming (高金明), LI Wei (李伟), LU Jie (卢杰), XIA Zhiwei (夏志伟), YI Ping (易萍), LIU Yi (刘仪), YANG Qingwei (杨青巍), HL-A Team. Infrared Imaging Bolometer for the HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(6): 590-594. DOI: 10.1088/1009-0630/18/6/02
    [6]ZHANG Jingyang (张镜洋), HAN Le (韩乐), CHANG Haiping (常海萍), LIU Nan (刘楠), XU Tiejun (许铁军). The Corrected Simulation Method of Critical Heat Flux Prediction for Water-Cooled Divertor Based on Euler Homogeneous Model[J]. Plasma Science and Technology, 2016, 18(2): 190-196. DOI: 10.1088/1009-0630/18/2/16
    [7]ZHANG Bin (张斌), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), ZHANG Xiaodong (张晓东), WANG Fumin (王福敏), YANG Zhendong (仰振东), CHEN Meiwen (陈美文), WANG Xiaoqiong (王晓琼), the EAST Team. Study of Divertor Heat Patterns Induced by LHCD L-Mode Plasmas Using an Infra-Red Camera System on EAST[J]. Plasma Science and Technology, 2015, 17(10): 831-836. DOI: 10.1088/1009-0630/17/10/04
    [8]CHEN Lei(陈蕾), LIAN Youyun(练友运), LIU Xiang(刘翔). Behavior of Brazed W/Cu Mockup Under High Heat Flux Loads[J]. Plasma Science and Technology, 2014, 16(3): 278-282. DOI: 10.1088/1009-0630/16/3/19
    [9]GAO Jinming (高金明), LI Wei (李伟), XIA Zhiwei (夏志伟), PAN Yudong (潘宇东), et al.. Analysis of Divertor Heat Flux with Infrared Thermography During Gas Fuelling in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(11): 1103-1107. DOI: 10.1088/1009-0630/15/11/05
    [10]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07

Catalog

    Article views (150) PDF downloads (1393) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return