Advanced Search+
GUO Guangmeng (郭广盟), WANG Jie (王杰), BIAN Fang (边访), TIAN Di (田地), FAN Qingwen (樊庆文). A Hydrogel’s Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 661-665. DOI: 10.1088/1009-0630/18/6/13
Citation: GUO Guangmeng (郭广盟), WANG Jie (王杰), BIAN Fang (边访), TIAN Di (田地), FAN Qingwen (樊庆文). A Hydrogel’s Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy[J]. Plasma Science and Technology, 2016, 18(6): 661-665. DOI: 10.1088/1009-0630/18/6/13

A Hydrogel’s Formation Device for Quick Analysis of Liquid Samples Using Laser-Induced Breakdown Spectroscopy

More Information
  • Received Date: August 31, 2015
  • The laser-induced breakdown spectroscopy technique has irreplaceable advantages in the field of detection due to its multi-phase specimen detection ability. The development of the LIBS technique for liquid analysis is obstructed by its inherent drawbacks like the surface ripples and extinction of emitted intensity, which make it unpractical. In this work, an in-situ hydrogel formation sampling device was designed and used the hydrogel as the detection phase of LIBS for Cu, Cr and Al in an aqueous solution. With the measured amount of resin placed in the device, the formed hydrogel could be obtained within 20 s after putting the device into water solution. The formed hydrogel could be directly analyzed by LIBS and reflect the elemental information of the water sample. The prominent performance made this hydrogel’s formation device especially suitable for quick in-situ environmental liquid analysis using LIBS.
  • 1 Eseller K E, Tripathi M M, Yueh F Y, et al. 2010,Applied Optics, 49: C21 2 Yu J, Ma Q, Motto-Ros V, et al. 2012, Frontiers of Physics, 7: 649 3 Cheri M S and Tavassoli S. 2011, Applied Optics, 50:1227 4 Zhang Y, Jia Y H, Chen J W, et al. 2012, Frontiers of Physics, 7: 714 5 Dong F Z, Chen X L, Wang Q, et al. 2012, Frontiers of Physics, 7: 679 6 Wang Q Q, Liu K, Zhao H, et al. 2012, Frontiers of Physics, 7: 701 7 Zhang L, Hu Z Y, Yin W B, et al. 2012, Frontiers of Physics, 7: 690 8 Wang Z, Yuan T B, Hou Z Y, et al. 2014, Frontiers of Physics, 9: 419 9 Barreda F-A, Trichard F, Barbier S, et al. 2012, Analytical and Bioanalytical Chemistry, 403: 2601 10 D′ ?az Pace D, D’Angelo C, Bertuccelli D, et al. 2006,Spectrochimica Acta Part B: Atomic Spectroscopy, 61:929 11 Haider A, Hedayet Ullah M, Khan Z, et al. 2014, Optics & Laser Technology, 56: 299 12 Alamelu D, Sarkar A and Aggarwal S. 2008, Talanta,77: 256 13 Chen Z, Li H, Liu M, et al. 2008, Spectrochimica Acta Part B: Atomic Spectroscopy, 63: 64 14 Chen Z, Godwal Y, Tsui Y Y, et al. 2010, Applied Optics, 49: C87 15 Lee Y, Oh S-W and Han S-H. 2012, Applied spectroscopy, 66: 1385 16 Zhu D, Chen J, Lu J, et al. 2012, Anal. Methods, 4:819 17 C′ aceres J, Tornero L′ opez J, Telle H, et al. 2001, Spectrochimica Acta Part B: Atomic Spectroscopy, 56: 831 18 Aras N, Ye? siller S¨U, Ate? s D A, et al. 2012, Spectrochimica Acta Part B: Atomic Spectroscopy, 74: 87 19 Cortez J and Pasquini C. 2013, Analytical Chemistry, 85: 1547 20 J¨ arvinen S T, Saarela J and Toivonen J. 2013, Spectrochimica Acta Part B: Atomic Spectroscopy, 86: 55 21 de Jesus A M, Aguirre M′A, Hidalgo M, et al. 2014,Journal of Analytical Atomic Spectrometry, 22 Aguirre M, Legnaioli S, Almod′ ovar F, et al. 2013, Spectrochimica Acta Part B: Atomic Spectroscopy, 79:88 23 Loudyi H, Rifai K, Laville S, et al. 2009, Journal of Analytical Atomic Spectrometry, 24: 1421 24 Rai N K and Rai A. 2008, Journal of Hazardous Materials, 150: 835 25 Rai N K, Rai A K, Kumar A, et al. 2008, Applied Optics, 47: G105 26 Nakamura S, Ito Y, Sone K, et al. 1996, Analytical Chemistry, 68: 2981 27 Snyder S C, Wickun W G, Mode J M, et al. 2011,Applied Spectroscopy, 65: 642 28 Cremers D A, Radziemski L J and Loree T R. 1984,Applied Spectroscopy, 38: 721 29 Huang J S, Liu H T and Lin K C. 2007, Analytica Chimica Acta, 581: 303 30 Ma X, Liu K, Quan J, et al. 2014, International Conference on Material and Environmental Engineering (ICMAEE 2014), Atlantis Press 31 Tang Y, Xu L, Yu L, et al. 2014, Agricultural Science & Technology, 15: 219 32 Gawande N and Mungray A A. 2015, Separation and Purification Technology, 33 Lin Q, Wang X, Niu G, et al. 2014, Chinese Science Bulletin, 59: 3377 34 Lin Q, Wei Z, Xu M, et al. 2014, RSC Advances, 4:14392 35 Sturm V, Vrenegor J, Noll R, et al. 2004, Journal of Analytical Atomic Spectrometry, 19: 451 36 Uhl A, Loebe K and Kreuchwig L. 2001, Spectrochimica Acta Part B: Atomic Spectroscopy, 56: 795 37 St-Onge L, Sabsabi M and Cielo P. 1997, Journal of Analytical Atomic Spectrometry, 12: 997 38 De Giacomo A, Dell’Aglio M and De Pascale O. 2004, Applied Physics A, 79: 1035 39 Huang J S, Ke C B, Huang L S, et al. 2002, Spectrochimica Acta Part B: Atomic Spectroscopy, 57: 35 40 Samek O, Beddows D C, Kaiser J, et al. 2000, Optical Engineering, 39: 2248 41 Freedman A, Iannarilli Jr F J and Wormhoudt J C.2005, Spectrochimica Acta Part B: Atomic Spectroscopy, 60: 1076 42 Yamamoto K Y, Cremers D A, Ferris M J, et al. 1996,Appl. Spectrosc., 50: 222 43 Sobral H, Sangin′ es R and Trujillo-V′ azquez A. 2012,Spectrochimica Acta Part B: Atomic Spectroscopy, 78:62 44 Stepputat M and Noll R. 2003, Applied Optics, 42:6210 45 Ismail M A, Cristoforetti G, Legnaioli S, et al. 2006,Anal. Bioanal. Chem., 385: 316
  • Related Articles

    [1]Yinan WANG (王一男), Shuaixing LI (李帅星), Li WANG (王莉), Ying JIN (金莹), Yanhua ZHANG (张艳华), Yue LIU (刘悦). Effects of HF frequency on plasma characteristics in dual-frequency helium discharge at atmospheric pressure by fluid modeling[J]. Plasma Science and Technology, 2018, 20(11): 115402. DOI: 10.1088/2058-6272/aac71e
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]LU Yijia (路益嘉), JI Linhong (季林红), CHENG Jia (程嘉). Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges[J]. Plasma Science and Technology, 2016, 18(12): 1175-1180. DOI: 10.1088/1009-0630/18/12/06
    [4]ZHENG Dianchun(郑殿春), WANG Jia(王佳), CHEN Chuntian(陈春天), ZHAO Dawei(赵大伟), ZHANG Chunxi(张春喜), YANG Jiaxiang(杨嘉祥). Dynamic Characteristics of SF 6 -N 2 -CO 2 Gas Mixtures in DC Discharge Process[J]. Plasma Science and Technology, 2014, 16(9): 848-855. DOI: 10.1088/1009-0630/16/9/08
    [5]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [6]Djilali BENYOUCEF, Mohammed YOUSFI. Ar + /Ar, O 2 + /O 2 and N 2 + /N 2 Elastic Momentum Collision Cross Sections: Calculation and Validation Using the Semi-Classical Model[J]. Plasma Science and Technology, 2014, 16(6): 588-592. DOI: 10.1088/1009-0630/16/6/09
    [7]ZHANG Lianzhu(张连珠), YAO Fubao(姚福宝), ZHAO Guoming(赵国明), HAO Yingying(郝莹莹), SUN Qian(孙倩). Effect of Addition of Nitrogen to a Capacitively Radio-Frequency Hydrogen Discharge[J]. Plasma Science and Technology, 2014, 16(3): 203-210. DOI: 10.1088/1009-0630/16/3/06
    [8]YU Yiqing(虞一青), XIN Yu(辛煜), LU Wenqi(陆文琪), NING Zhaoyuan(宁兆元). Abnormal Enhancement of N2+ Emission Induced by Lower Frequencies in N2 Dual-Frequency Capacitively Coupled Plasmas[J]. Plasma Science and Technology, 2012, 14(3): 222-226. DOI: 10.1088/1009-0630/14/3/07
    [9]WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05
    [10]YUAN Ying (袁颖), YE Chao (叶超), CHEN Tian (陈天), GE Shuibin (葛水兵), LIU Huiming (刘卉敏), CUI Jin (崔进), XU Yijun (徐轶君), DENG Yanhong (邓艳红), NING Zhaoyuan (宁兆元). C2F6/O2/Ar Plasma Chemistry of 60MHz/2MHz Dual- frequency Discharge and Its Effect on Etching of SiCOH Low-k Films[J]. Plasma Science and Technology, 2012, 14(1): 48-53. DOI: 10.1088/1009-0630/14/1/11

Catalog

    Article views (274) PDF downloads (538) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return