Advanced Search+
Atif HUSSAIN, Xun GAO (高勋), QiLI (李奇), Zuoqiang HAO (郝作强), Jingquan LIN (林景全). Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics[J]. Plasma Science and Technology, 2017, 19(1): 15505-015505. DOI: 10.1088/1009-0630/19/1/015505
Citation: Atif HUSSAIN, Xun GAO (高勋), QiLI (李奇), Zuoqiang HAO (郝作强), Jingquan LIN (林景全). Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics[J]. Plasma Science and Technology, 2017, 19(1): 15505-015505. DOI: 10.1088/1009-0630/19/1/015505

Combined effects of ambient gas pressures and magnetic field on laser plasma expansion dynamics

Funds: supported by National Nature Science Foundation of China under Grant Nos. 61178022 and 61575030. Research funds for the Doctoral program of Higher Education of China (No. 0112216120006,20122216120009) and also supported by the Science and Technology Department of Changchou City (No. 14KP007).
More Information
  • Received Date: January 05, 2016
  • In this work, we investigated the influence of air gas pressures on the expansion features of nanosecond laser ablated aluminum plasma in the absence and presence of a nonuniform magnetic field using fast photography. A particular emphasis was given to the plume dynamics (shape, size) with the combined effects of ambient gas pressures and an external magnetic field. Free expansion, sharpening effect, and hemi-spherical structures of the aluminum plasma were observed without a magnetic field under different gas pressures. Analysis of the resulting plume images with the combined effects of air gas pressures and a magnetic field show significant changes, such as plume splitting, elliptical geometry changes, radial expansion, and plume confinement. Furthermore, the total size of the plasma plume with a magnetic field was measured to be smaller than the plasma plume without a magnetic field at several background pressures.
  • [1]
    Haverkamp J D et al 2008 J. Phys. D: Appl. Phys. 42 025201
    [2]
    Chrisey D B and Hubler G K 1994 Pulsed Laser Deposition of Thin Films (Milton: Wiley)
    [3]
    Rai V N et al 2003 Appl. Optics 42 18
    [4]
    Sizyuk V, Hassanein A and Sizyuk T 2007 Laser & Part. Beams 25 143
    [5]
    Harilal S S, O’Shay B and Tillack M S 2005 J. Appl. Phys. 98 036102
    [6]
    Ott E and Mannheimer W M 1977 Nucl. Fusion 17 1057
    [7]
    Mostovych A N, Rapin B H and Stamper J A 1989 Phys. Rev. Lett. 62 2837
    [8]
    Gosling J 1993 Phys. Fluids B 5 2638
    [9]
    Glass A J 1986 J. Vac. Technol. A 4 1098
    [10]
    Peterson R R et al 2002 Phys. Plasmas Phys. 9 2287
    [11]
    Sappy A D and Gamble T K 1992 J. Appl. Phys. 72 5095
    [12]
    Neogi A and Thareja R K 1999 J. Appl. Phys. 85 1131
    [13]
    Winske D 1989 Phys. Fluids B Plasma Phys. 1 1900
    [14]
    Atif H et al 2015 Plasma Sci. Technol. 17 693
    [15]
    Patel D N, Pandey P K and Thareja R K 2013 Phys. Plasmas 20 103503
    [16]
    Neogi A and Thareja R K 1999 Phys. Plasmas 6 365
    [17]
    Pandey P K and Thareja R K 2013 Phys. Plasmas 20 022117
    [18]
    Farid N et al 2013 Appl. Phys. Lett. 103 191112
    [19]
    Kumar A, Singh R K and Joshi H 2011 Spectrochim. Acta Part B 66 444
    [20]
    Radziemski L J and Cremers D A 1989 Laser Induced Plasma and Applications (New York: Marcel Dekker)
    [21]
    Zheng J P et al 1989 Appl. Phys. Lett. 54 954
    [22]
    Andrea T J and Klaus R 1999 J. Phys. D 32 21
    [23]
    Nakimana A et al 2013 J. Phys. D: Appl. Phys. 46 285204
    [24]
    Harilal S S et al 1998 Appl. Phys. Lett. 72 167
    [25]
    Harilal S S et al 2005 IEEE Trans. Plasma Sci. 33 474
    [26]
    Singh R K et al 2007 J. Appl. Phys. 101 103301
    [27]
    Kokai F, Koga Y and Heimann R B 1996 Appl. Surf. Sci. 96 261
    [28]
    Qindeel R et al 2011 Optoelectronics Adv. Mater. -Rapid Comm. 5 331–5
    [29]
    Rai V N, Shukla M and Pant H C 1999 Pramana-J. Phys. 52 49
    [30]
    Bhadra D K 1968 Phys. Fluids 11 234
    [31]
    Harilal S S 2007 J. Appl. Phys. 102 123306
    [32]
    Liu T H et al 2014 Chin. Phys. B 23 085203
  • Related Articles

    [1]Xiangcheng DONG (董向成), Jianhong CHEN (陈建宏), Xiufang WEI (魏秀芳), PingYUAN (袁萍). Calculating the electron temperature in the lightning channel by continuous spectrum[J]. Plasma Science and Technology, 2017, 19(12): 125304. DOI: 10.1088/2058-6272/aa8acb
    [2]YANG Lanlan (杨兰兰), TU Yan (屠彦), YU Yongbo (俞永波), HU Dinglan (户玎岚), ZHANG Xiong (张雄). Spatial and Excitation Variations for Different Applied Voltages in an Atmospheric Neon Plasma Jet[J]. Plasma Science and Technology, 2016, 18(9): 912-917. DOI: 10.1088/1009-0630/18/9/07
    [3]JIN Ying (金英), REN Chunsheng (任春生), YANG Liang (杨亮), ZHANG Jialiang (张家良). Nonequilibrium Atmospheric Pressure Ar/O2 Plasma Jet: Properties and Application to Surface Cleaning[J]. Plasma Science and Technology, 2016, 18(2): 168-172. DOI: 10.1088/1009-0630/18/2/12
    [4]ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
    [5]ZHOU Yongjie(周永杰), YUAN Qianghua(袁强华), WANG Xiaomin(王晓敏), YIN Guiqin(殷桂琴), DONG Chenzhong(董晨钟). Optical Spectroscopic Investigation of Ar/CH 3 OH and Ar/N 2 /CH 3 OH Atmospheric Pressure Plasma Jets[J]. Plasma Science and Technology, 2014, 16(2): 99-103. DOI: 10.1088/1009-0630/16/2/03
    [6]LI Zhanguo (李战国), LI Ying (李颖), CAO Peng (曹鹏), ZHAO Hongjie (赵红杰). Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet[J]. Plasma Science and Technology, 2013, 15(7): 696-701. DOI: 10.1088/1009-0630/15/7/17
    [7]FEI Xiaomeng (费小猛), Shin-ichi KURODA, Tamio MORI, Katsuhiko HOSOI. High-Density Polyethylene (HDPE) Surface Treatment Using an RF Capacitive Atmospheric Pressure Cold Ar Plasma Jet[J]. Plasma Science and Technology, 2013, 15(6): 577-581. DOI: 10.1088/1009-0630/15/6/16
    [8]LIANG Haoming (梁浩明), XIAO Chijie (肖池阶), ZHOU Guiping(周桂萍), PU Zuyin(濮祖荫), WANG Honggang (王红刚), WANG Xiaogang (王晓钢). Alfvénic Fluctuations in an Interplanetary Coronal Mass Ejection Observed Near 1 AU[J]. Plasma Science and Technology, 2012, 14(2): 102-106. DOI: 10.1088/1009-0630/14/2/04
    [9]ZHANG Haiyan, YE Chao, NING Zhaoyuan. Dependence of Decamethylcyclopentasiloxane (DMCPS) Dissociation on Ionized Energy by Using Quadrupole Mass Spectrum[J]. Plasma Science and Technology, 2010, 12(6): 677-680.
    [10]YUAN Zhongcai(袁忠才), SHI Jiaming (时家明), HUANG Yong (黄勇), XU Bo (许波). Faraday angle of Linearly Polarized Waves along Magnetic Field in Magnetized Collisional Plasmas[J]. Plasma Science and Technology, 2010, 12(5): 519-522.

Catalog

    Article views (232) PDF downloads (616) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return