Advanced Search+
Xiaoyu DONG (董晓宇), Tingting LIU (刘婷婷), Yuqin XIONG (熊玉琴). A novel approach to regulate cell membrane permeability for ATP and NADH formation in Saccharomyces cerevisiae induced by air cold plasma[J]. Plasma Science and Technology, 2017, 19(2): 24001-024001. DOI: 10.1088/2058-6272/19/2/024001
Citation: Xiaoyu DONG (董晓宇), Tingting LIU (刘婷婷), Yuqin XIONG (熊玉琴). A novel approach to regulate cell membrane permeability for ATP and NADH formation in Saccharomyces cerevisiae induced by air cold plasma[J]. Plasma Science and Technology, 2017, 19(2): 24001-024001. DOI: 10.1088/2058-6272/19/2/024001

A novel approach to regulate cell membrane permeability for ATP and NADH formation in Saccharomyces cerevisiae induced by air cold plasma

Funds: Supported by National Natural Science Foundation of China (Nos.21246012, 21306015 and 21476032).
More Information
  • Received Date: May 26, 2016
  • Air cold plasma has been used as a novel method for enhancing microbial fermentation. The aim of this work was to explore the effect of plasma on membrane permeability and the formation of ATP and NADH in Saccharomyces cerevisiae, so as to provide valuable information for large-scale application of plasma in the fermentation industry. Suspensions of S. cerevisiae cells were exposed to air cold plasma for 0, 1, 2, 3, 4 and 5 min, and then subjected to various analyses prior to fermentation (0h) and at the 9 and 21 h stages of fermentation. Compared with non-exposed cells, cells exposed to plasma for 1 min exhibited a marked increase in cytoplasmic free Ca 2+ concentration as a result of the significant increase in membrane potential prior to fermentation. At the same time, the ATP level in the cell suspension decreased by about 40%, resulting in a reduction of about 60% in NADH prior to culturing. However, the levels of ATP and NADH in the culture at the 9 and 21 h fermentation stages were different from the level at 0 h. Taken together, the results indicated that exposure of S. cerevisiae to air cold plasma could increase its cytoplasmic free Ca 2+ concentration by improving the cell membrane potential, consequently leading to changes in ATP and NADH levels.
  • [1]
    Majid M 2015 Biophys. Chem. 207 114
    [2]
    Chen R R 2007 Appl. Microbiol. Biotechnol. 74 730
    [3]
    Denis V and Cyert M S 2002 J. Cell Biol. 156 29
    [4]
    Popa C V et al 2010 FEBS J. 277 4027
    [5]
    Chen A et al 2012 J. Rare Earths 30 947
    [6]
    Loghavi L, Sastry S K and Yousef A E 2009 Biotechnol. Progr. 25 85
    [7]
    Zeng S W, Huang Q L and Zhao S M 2014 Food Control 46 360
    [8]
    Pei X et al 2012 J. Phys. D: Appl. Phys. 45 1
    [9]
    Dong X Y et al 2010 Biotechnol. Lett. 32 1245
    [10]
    Jiang M et al 2014 J. Ind. Microbiol. Bio. 41 115
    [11]
    Dong X Y et al 2015 J. Chem. Eng. Chin. Univ. 29 881 (in Chinese)
    [12]
    Dong X Y et al 2014 Plasma Sci. Technol. 16 73
    [13]
    Camarasa C, Grivet J P and Dequin S 2003 Microbiology 149 2669
    [14]
    Zhou J et al 2009 Biotechnol. Adv. 27 94
    [15]
    Larsson C et al 1997 J. Bacteriol. 179 7243
    [16]
    Martins A et al 2014 Int. J. Antimicrob. Agents 37 410
    [17]
    Paidhungat M and Garrett S 1997 Mol. Cell Biol. 17 6339
    [18]
    Gustin M C et al 1998 Science 242 762
    [19]
    Wada Y et al 1987 J. Biol Chem. 262 17260
    [20]
    Palmer C P et al 2001 Proc. Natl Acad. Sci. USA 98 7801
    [21]
    Dong X Y 2014 Adv. Mater. Res. 1033–1034 229
    [22]
    Darzynkiewicz Z, Staiano-Coico L and Melamed M R 1981 Proc. Natl Acad. Sci. USA 78 2383
    [23]
    Fujikawa K et al 2015 PloS One 10 e0127421
    [24]
    Haag F et al 2007 Purinergic Signal 3 71
    [25]
    Bradford M 1976 Anal. Biochem. 72 248
    [26]
    Yonson S et al 2006 J. Phys. D: Appl. Phys. 39 3508
    [27]
    Diaz M et al 2010 Biochem. Eng. J. 48 385
    [28]
    Novo D J et al 2000 Antimicrob. Agents Chemother. 44 827
    [29]
    Clapham D E 2007 Cell 131 1047
    [30]
    Liu M et al 2006 Eukaryot Cell 5 1788
    [31]
    Doelle H W 1982 Eur. J. Appl. Microbiol. Biotechnol. 14 241
    [32]
    Laroussi M and Leipold F 2004 Int. J. Mass Spectrom. 233 81
    [33]
    Zhang H et al 2015 Sci. Rep. 5 10031
    [34]
    Li J et al 2010 World J. Microb. Biot. 26 1181
    [35]
    Jensen P R 1992 J. Bacteriol. 174 7635
    [36]
    Larsson C, Pahlman I and Gustafsson L 2000 Yeast 16 797
    [37]
    Jayakody L N et al 2013 Appl. Microbiol. Biotechnol. 97 6589
    [38]
    Vemuri G N et al 2007 Proc. Natl Acad. Sci. USA 104 2402
  • Related Articles

    [1]Lin SHEN (申林), Lei GONG (宫蕾), Shuhua CHEN (陈淑花), Shiping ZHAN (詹世平), Cheng ZHANG (章程), Tao SHAO (邵涛). Improvement of β-phase crystal formation in a BaTiO3-modified PVDF membrane[J]. Plasma Science and Technology, 2018, 20(6): 65510-065510. DOI: 10.1088/2058-6272/aaada8
    [2]Xiaoyu DONG (董晓宇). Measurement of cytoplasmic Ca2+ concentration in Saccharomyces cerevisiae induced by air cold plasma[J]. Plasma Science and Technology, 2018, 20(4): 44001-044001. DOI: 10.1088/2058-6272/aa9479
    [3]Yuyang WANG (汪宇扬), Cheng CHENG (程诚), Peng GAO (高鹏), Shaopeng LI (李少鹏), Jie SHEN (沈洁), Yan LAN (兰彦), Yongqiang YU (余永强), Paul K CHU (朱剑豪). Cold atmospheric-pressure air plasma treatment of C6 glioma cells: effects of reactive oxygen species in the medium produced by the plasma on cell death[J]. Plasma Science and Technology, 2017, 19(2): 25503-025503. DOI: 10.1088/2058-6272/19/2/025503
    [4]WANG Zhengduo (王正铎), ZHU Huiqin (朱惠钦), YANG Lizhen (杨丽珍), WANG Xinwei(王新炜), LIU Zhongwei (刘忠伟), CHEN Qiang (陈强). Plasma Modified Polypropylene Membranes as the Lithium-Ion Battery Separators[J]. Plasma Science and Technology, 2016, 18(4): 424-429. DOI: 10.1088/1009-0630/18/4/16
    [5]SHI Xingmin (石兴民), CAI Jingfen (蔡晶芬), XU Guimin (许桂敏), REN Hongbin (任鸿斌), CHEN Sile (陈思乐), CHANG Zhengshi (常正实), LIU Jinren (刘进仁), HUANG Chongya (黄崇亚), ZHANG Guanjun (张冠军), WU Xili (吴喜利). Effect of Cold Plasma on Cell Viability and Collagen Synthesis in Cultured Murine Fibroblasts[J]. Plasma Science and Technology, 2016, 18(4): 353-359. DOI: 10.1088/1009-0630/18/4/04
    [6]CHEN Zhaoquan(陈兆权), ZHENG Xiaoliang(郑晓亮), XIA Guangqing(夏广庆), LI Ping(李平), HU Yelin(胡业林), DU Zhiwen(杜志文), ZHU Longji(祝龙记), LIU Minghai(刘明海), CHEN Minggong(陈明功), HU Xiwei(胡希伟). A 30 mm Wide DC-Driven Brush-Shaped Cold Air Plasma Without Airflow Supplement[J]. Plasma Science and Technology, 2014, 16(4): 329-334. DOI: 10.1088/1009-0630/16/4/06
    [7]DONG Xiaoyu(董晓宇), YUAN Yulian(袁玉莲), TANG Qian(唐乾), DOU Shaohua(窦少华), DI Lanbo(底兰波), ZHANG Xiuling(张秀玲). Parameter Optimization for Enhancement of Ethanol Yield by Atmospheric Pressure DBD-Treated Saccharomyces cerevisiae[J]. Plasma Science and Technology, 2014, 16(1): 73-78. DOI: 10.1088/1009-0630/16/1/16
    [8]YIN Shiheng (尹诗衡), REN Li (任力), WANG Yingjun (王迎军). Argon Plasma-Induced Graft Polymerization of PEGMA on Chitosan Membrane Surface for Cell Adhesion Improvement[J]. Plasma Science and Technology, 2013, 15(10): 1041-1046. DOI: 10.1088/1009-0630/15/10/15
    [9]Nasrin NAVABSAFA, Hamid GHOMI, Maryam NIKKHAH, Soheila MOHADES, et al.. Effect of BCD Plasma on a Bacteria Cell Membrane[J]. Plasma Science and Technology, 2013, 15(7): 685-689. DOI: 10.1088/1009-0630/15/7/15
    [10]ZHONG Shao-Feng (钟少锋). Surface Modification of Polypropylene Microporous Membrane by Atmospheric- Pressure Plasma Immobilization of N,N-dimethylamino ethyl methacrylate[J]. Plasma Science and Technology, 2010, 12(5): 619-627.

Catalog

    Article views (430) PDF downloads (755) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return