Advanced Search+
Jianwu HE (贺建武), Longfei MA (马隆飞), Senwen XUE (薛森文), Chu ZHANG (章楚), Li DUAN (段俐), Qi KANG (康琦). Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology, 2018, 20(2): 25403-025403. DOI: 10.1088/2058-6272/aa89e1
Citation: Jianwu HE (贺建武), Longfei MA (马隆飞), Senwen XUE (薛森文), Chu ZHANG (章楚), Li DUAN (段俐), Qi KANG (康琦). Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer[J]. Plasma Science and Technology, 2018, 20(2): 25403-025403. DOI: 10.1088/2058-6272/aa89e1

Study of electron-extraction characteristics of an inductively coupled radio-frequency plasma neutralizer

Funds: This work is supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB23030100).
More Information
  • Received Date: July 12, 2017
  • Inductively coupled radio-frequency (RF) plasma neutralizer (RPN) is an insert-free device that can be employed as an electron source in electric propulsion applications. Electron-extraction characteristics of the RPN are related to the bulk plasma parameters and the device’s geometry. Therefore, the effects of different electron-extraction apertures and operational parameters upon the electron-extraction characteristics are investigated according to the global nonambipolar flow andsheathmodel. Moreover,these models canalsobeusedtoexplain why the electron-extraction characteristics of the RPN strongly depend upon the formation of the anode spot. During the experimental study, two types of anode spots are observed. Each of them has unique characteristics of electron extraction. Moreover, the hysteresis of an anode spot is observed by changing the xenon volume-flow rates or the bias voltages. In addition, the rapid ignited method, gas-utilization factor, electron-extraction cost and other factors that need to be considered in the design of the RPN are also discussed.
  • [1]
    Scholze F, Tartz M and Neumann H 2008 Rev. Sci. Instrum. 79 02B724
    [2]
    Hatakeyama T et al 2007 Preliminary study on radio frequency neutralizer for ion engine 30th Int. Electric Propulsion Conf. (Florence, Italy) IEPC-2007-226
    [3]
    Weis S et al 2005 Development of a capacitively coupled insert-free RF-neutralizer 29th Int. Electric Propulsion Conf. (Princeton, NJ: Princeton University) IEPC-2005-086
    [4]
    Godyak V, Raitses Y and Fisch N J 2007 RF plasma cathode-neutralizer for space applications 30th Int. Electric Propulsion Conf. (Florence, Italy) IEPC-2007-266
    [5]
    To?sJ et al 2002 Contrib. Plasma Phys. 42 119
    [6]
    Raitses Y, Hendryx J K and Fisch N J 2009 A parametric study of electron extraction from a low frequency inductively coupled RF-plasma source 31th Int. Electric Propulsion Conf. (Michigan, MI: University of Michigan) IEPC?2009-24
    [7]
    Weatherford B R, Barnat E V and Foster J E 2012 Plasma Sources Sci. Technol. 21 055030
    [8]
    Zhao G et al 2014 Plasma Sci. Technol. 16 669
    [9]
    Jahanbakhsh S and Celik M 2014 Theoretical investigation and modeling of current extraction from a radio-frequency cathode 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Cleveland, OH: AIAA) AIAA 2014-3402
    [10]
    Jahanbakhsh S, Satir M and Celik M 2016 Rev. Sci. Instrum. 87 02B922
    [11]
    Hidaka Y et al 2007 J. Vac. Sci. Technol. 25 781
    [12]
    Takao Y et al 2016 Japan. J. Appl. Phys. 55 07LD09
    [13]
    Longmier B, Baalrud S and Hershkowitz N 2006 Rev. Sci. Instrum. 77 513
    [14]
    Longmier B and Hershkowitz N 2008 Rev. Sci. Instrum. 79 093506
    [15]
    Baalrud S D, Longmier B and Hershkowitz N 2009 Plasma Sources Sci. Technol. 18 035002
    [16]
    Baalrud S D, Hershkowitz N and Longmier B 2007 Phys. Plasmas 14 169
    [17]
    Baalrud S D et al 2015 Plasma Physics and Controlled Fusion 57 44003
    [18]
    Loeb H W and Schartner K 2004 Development of RIT-Microthrusters 55th Int. Astronautical Congress (Vancouver, Canada) IAC-04-S.4.04
    [19]
    Song B, D’Angelo N and Merlino R L 1991 J. Phys. D Appl. Phys. 24 1789
    [20]
    Chabert P and Braithwaite N 2011 Physics of Radio-Frequency Plasmas (Cambridge: Cambridge University Press) http:// ftfsite.ru/wp-content/?les/Physics_of_Radi_5.1.pdf
  • Cited by

    Periodical cited type(19)

    1. Alegria, E.C.B., Sutradhar, M., Barman, T.R. Catalytic Oxidation of VOCs to Value-added Compounds Under Mild Conditions. Catalysis for a Sustainable Environment: Reactions, Processes and Applied Technologies, Volume 1-3, 2024.
    2. Yan, Y., Zhu, B., Xu, L. et al. Removal of low-concentration toluene with multi-needle corona discharge coupling Ag/TiO2 nanocatalyst system | [多针电晕放电协同 Ag/TiO2纳米催化剂脱除空气中低浓度甲苯研究]. Guocheng Gongcheng Xuebao/The Chinese Journal of Process Engineering, 2023, 23(11): 1568-1576. DOI:10.12034/j.issn.1009-606X.223021
    3. Li, Y., Feng, Y., Bai, H. et al. Enhanced visible-light photocatalytic performance of black TiO2/SnO2 nanoparticles. Journal of Alloys and Compounds, 2023. DOI:10.1016/j.jallcom.2023.170672
    4. Tilaki, R.A.D., Adhami, S.M., Arimi, E.B. Photocatalytic Removal of Toluene from Air Using Glass Foam Coated with Titanium Dioxide Nanoparticles. Journal of Mazandaran University of Medical Sciences, 2023, 33(223): 105-118.
    5. Qi, L.-Q., Yu, Z., Chen, Q.-H. et al. Toluene degradation using plasma-catalytic hybrid system over Mn-TiO2 and Fe-TiO2. Environmental Science and Pollution Research, 2023, 30(9): 23494-23509. DOI:10.1007/s11356-022-23834-8
    6. Piferi, C., Riccardi, C. A study on propane depletion by surface dielectric barrier discharges. Cleaner Engineering and Technology, 2022. DOI:10.1016/j.clet.2022.100486
    7. Piferi, C., Daghetta, M., Schiavon, M. et al. Pentane Depletion by a Surface DBD and Catalysis Processing. Applied Sciences (Switzerland), 2022, 12(9): 4253. DOI:10.3390/app12094253
    8. Huang, Q., Liang, Z., Qi, F. et al. Carbon Dioxide Conversion Synergistically Activated by Dielectric Barrier Discharge Plasma and the CsPbBr3@TiO2Photocatalyst. Journal of Physical Chemistry Letters, 2022, 13(10): 2418-2427. DOI:10.1021/acs.jpclett.2c00253
    9. Xing, Y., Zhang, W., Su, W. et al. The Bibliometric Analysis and Review of the Application of Plasma in the Field of VOCs. Catalysts, 2022, 12(2): 173. DOI:10.3390/catal12020173
    10. Prekodravac, J., Giannakoudakis, D.A., Colmenares, J.C. et al. Black titania: Turning the surface chemistry toward visible-light absorption, (photo) remediation of hazardous organics and H2 production. Novel Materials for Environmental Remediation Applications: Adsorption and Beyond, 2022. DOI:10.1016/B978-0-323-91894-7.00010-4
    11. Zhu, B., Li, Q., Gao, Y. et al. Improving plasma sterilization by constructing a plasma photocatalytic system with a needle array corona discharge and Au plasmonic nanocatalyst. Plasma Science and Technology, 2022, 25(1): 015505. DOI:10.1088/2058-6272/ac7db9
    12. Dong, B., Li, Z., Wang, P. et al. 4-Chlorophenol containing wastewater joint treated by pulsed discharge plasma in gas-liquid two phase and Fe-modified TiO2 catalyst | [脉冲气液两相放电等离子体耦合Fe改性的TiO2催化剂降解废水中的4-氯酚]. Huagong Jinzhan/Chemical Industry and Engineering Progress, 2021, 40(12): 6721-6728. DOI:10.16085/j.issn.1000-6613.2020-2573
    13. Piferi, C., Riccardi, C. High concentration propane depletion with photocatalysis. AIP Advances, 2021, 11(12): 125008. DOI:10.1063/5.0073924
    14. Yazdani-Aval, M., Alizadeh, S., Bahrami, A. et al. Efficient removal of gaseous toluene by the photoreduction of Cu/Zn-BTC metal-organic framework under visible-light. Optik, 2021. DOI:10.1016/j.ijleo.2021.167841
    15. Murindababisha, D., Yusuf, A., Sun, Y. et al. Current progress on catalytic oxidation of toluene: a review. Environmental Science and Pollution Research, 2021, 28(44): 62030-62060. DOI:10.1007/s11356-021-16492-9
    16. Deng, X., Zhang, D., Lu, S. et al. Green synthesis of Ag/g-C3N4 composite materials as a catalyst for DBD plasma in degradation of ethyl acetate. Materials Science and Engineering: B, 2021. DOI:10.1016/j.mseb.2021.115321
    17. ZHANG, S., GAO, Y., SUN, H. et al. Charge transfer in plasma assisted dry reforming of methane using a nanosecond pulsed packed-bed reactor discharge. Plasma Science and Technology, 2021, 23(6): 064007. DOI:10.1088/2058-6272/abed30
    18. Yan, Y., Gao, Y.-N., Zhang, L.-Y. et al. Promoting Plasma Photocatalytic Oxidation of Toluene Via the Construction of Porous Ag–CeO2/TiO2 Photocatalyst with Highly Active Ag/oxide Interface. Plasma Chemistry and Plasma Processing, 2021, 41(1): 335-350. DOI:10.1007/s11090-020-10125-8
    19. Wang, R., Ren, J., Wu, J. et al. Characteristics and mechanism of toluene removal by double dielectric barrier discharge combined with an Fe2O3/TiO2/γ-Al2O3catalyst. RSC Advances, 2020, 10(68): 41511-41522. DOI:10.1039/d0ra07938c

    Other cited types(0)

Catalog

    Article views (277) PDF downloads (471) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return