Advanced Search+
Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
Citation: Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2

Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter

Funds: This work was supported by National Natural Science Foundation of China (Nos.11705022, 11505025, 11705023), Innovation and Entrepreneurship Plan of Dalian Nationalities University (school-level A?+?Nos. 201712026380).
More Information
  • Received Date: January 08, 2018
  • In this work, a two-dimensional numerical simulation of the discharge characteristics of helium plasma propagating inside a dielectric tube was performed. A trapezoidal +9 kV pulse lasting 400 ns was applied on a needle electrode set inside the dielectric tube to ignite the discharge. The discharges generated in the tubes with a variable or a constant inner diameter were investigated. The focus of this study was on clarifying the effect of the tube diameter on the discharge structure and dynamics. The comparison of the discharge characteristics generated in dielectric tubes with different diameters was carried out. It was shown that the tube diameter plays a significant role in discharge behavior of plasma propagating in the dielectric tube.
  • [1]
    Lu X et al 2016 Phys. Rep. 630 1
    [2]
    Demkin V P et al 2016 Phys. Plasmas 23 043509
    [3]
    Chen G L et al 2012 Chin. Phys. B 21 105201
    [4]
    Kim S J and Chung T H 2015 Appl. Phys. Lett. 107 063702
    [5]
    Lu X et al 2014 Phys. Rep. 540 123
    [6]
    J?gi I et al 2014 J. Phys. D: Appl. Phys. 47 415202
    [7]
    Talviste R et al 2016 J. Phys. D: Appl. Phys. 49 195201
    [8]
    Sohbatzadeh F and Omran A V 2014 Phys. Plasmas 21 113510
    [9]
    Gou J, Xian Y and Lu X 2016 Phys. Plasmas 23 053508
    [10]
    Wu S et al 2016 Phys. Plasmas 23 103506
    [11]
    Jánsky J et al 2010 J. Phys. D: Appl. Phys. 43 395201
    [12]
    Jansky J et al 2011 IEEE Trans. Plasma Sci. 39 2106
    [13]
    Jánsky J et al 2011 J. Phys. D: Appl. Phys. 44 335201
    [14]
    Yan W et al 2017 J. Phys. D: Appl. Phys. 50 345201
    [15]
    2017 COMSOL 5.0 (Burlington, MA: COMSOL) (https://cn. comsol.com/)
    [16]
    Oh J S, Walsh J L and Bradley J W 2012 Plasma Sources Sci. Technol. 21 034020
    [17]
    Karakas E, Akman M A and Laroussi M 2012 Plasma Sources Sci. Technol. 21 034016
    [18]
    Liu F C, Yan W and Wang D Z 2013 Acta Phys. Sin. 62 175204 (in Chinese)
    [19]
    Yan W et al 2015 Chin. Phys. B 24 065203
    [20]
    Liu X Y et al 2014 Plasma Sources Sci. Technol. 23 035007
    [21]
    Kulikovsky A A 1998 Phys. Rev. E 57 7066
    [22]
    Jánsky J and Bourdon A 2011 Eur. Phys. J. Appl. Phys. 55 13810
  • Related Articles

    [1]Mamat Ali BAKE, Arzigul ELAJI. Photon and positron production by ultrahigh-intensity laser interaction with various plasma foils[J]. Plasma Science and Technology, 2021, 23(4): 45001-045001. DOI: 10.1088/2058-6272/abeb04
    [2]Nureli YASEN, Baisong XIE (谢柏松), Weiyuan LIU (刘维媛). Dense positrons and γ-rays generation by lasers interacting with convex target[J]. Plasma Science and Technology, 2021, 23(1): 15003-015003. DOI: 10.1088/2058-6272/abcaed
    [3]Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf
    [4]Suyun ZHOU (周素云), Hui CHEN (陈辉), Yanfang LI (李艳芳). Breaking of a Langmuir wave in cold electron–positron–ion plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14008-014008. DOI: 10.1088/2058-6272/aa8cc0
    [5]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in a dense electron–positron–ion plasma with degenerate electrons and positrons[J]. Plasma Science and Technology, 2017, 19(12): 125302. DOI: 10.1088/2058-6272/aa8765
    [6]Feng WAN (弯峰), Chong LV (吕冲), Moran JIA (贾默然), Baisong XIE (谢柏松). Enhanced photon emission and pair production in laser-irradiated plasmas[J]. Plasma Science and Technology, 2017, 19(7): 75201-075201. DOI: 10.1088/2058-6272/aa64ed
    [7]Guiliang SONG (宋桂良), Huishan CAI (蔡辉山). Linear tearing modes in an electron-positron plasma[J]. Plasma Science and Technology, 2017, 19(4): 45002-045002. DOI: 10.1088/2058-6272/aa5801
    [8]K OGAWA, T NISHITANI, M ISOBE, M SATO, M YOKOTA, H HAYASHI, T KOBUCHI, T NISHIMURA. Effects of gamma-ray irradiation on electronic and non-electronic equipment of Large Helical Device[J]. Plasma Science and Technology, 2017, 19(2): 25601-025601. DOI: 10.1088/2058-6272/19/2/025601
    [9]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [10]JI Liangliang (吉亮亮), SHEN Baifei (沈百飞), ZHANG Xiaomei (张晓梅), WANG Wenpeng (王文鹏), YU Yahong (郁亚红), WANG Xiaofeng (王晓峰), YI Longqing (易龙卿), SHI Yin (时银), et al. Plasma Approach for Generating Ultra-Intense Single Attosecond Pulse[J]. Plasma Science and Technology, 2012, 14(10): 859-863. DOI: 10.1088/1009-0630/14/10/01

Catalog

    Article views (233) PDF downloads (484) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return