Advanced Search+
Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782
Citation: Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782

Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts

Funds: This work is supported by National Natural Science Foundation of China (No. 51777153).
More Information
  • Received Date: January 12, 2018
  • With the continuous improvement of current levels in power systems, the demands on the breaking capacity requirements of vacuum circuit breakers are getting higher and higher. The breaking capacity of vacuum breakers is determined by cathode spots, which provide electrons and metal vapor to maintain the arc. In this paper, experiments were carried out on two kinds of transverse magnetic field (TMF) contacts in a demountable vacuum chamber, the behavior of the cathode spots was recorded by a high-speed charge-coupled device (CCD) video camera, and the characteristics of the cathode spots were analyzed through the image processing method. The phenomenon of cathode spot groups and the star-shaped pattern of the spots were both discovered in the experiment. The experimental results show that with the condition of TMF contacts the initial expansion speed of cathode spots is influenced by some parameters, such as the tested current, contact gap, the structure of the contact, the contact diameter, the number of slots, etc. In addition, the influence of the magnetic field on the formation of the cathode spot groups, the distribution, and the dynamic characteristics of the cathode spots were analyzed. It is concluded that the characteristics of the cathode spots are due to the effect of the magnetic field on the near-cathode plasma. The study of the characteristics of cathode spots in this paper would be helpful in the exploration of the physical process of vacuum arcs, and would be of guiding significance in optimizing the design of vacuum circuit breakers.
  • [1]
    Ge G W et al 2016 IEEE Trans. Plasma Sci. 44 79
    [2]
    Lian M F et al 2016 Phys. Plasmas 23 123521
    [3]
    Wang J and Qian Z 1987 Electric. Appl. 1987 14 (in Chinese)
    [4]
    Lafferty J M 1980 Vacuum Arcs: Theory and Application (New York: Wiley)
    [5]
    Djakov B E and Holmes R 1971 J. Phys. D: Appl. Phys. 4 504
    [6]
    Boxman R L, Sanders D M and Martin P J 1995 Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications (Park Ridge, NJ: Noyes)
    [7]
    Daalder J E 1974 IEEE Trans. Power App. Syst. PAS-93 1747
    [8]
    Boxman R L et al 1983 IEEE Trans. Plasma Sci. 11 138
    [9]
    Rakhovsky V I 1984 IEEE Trans. Plasma Sci. 12 199
    [10]
    Agarwal M S and Holmes R 1984 J. Phys. D: Appl. Phys. 17 743
    [11]
    Chaly A M, Logatchev A A and Shkol’nik S M 1997 IEEE Trans. Plasma Sci. 25 564
    [12]
    Zabello K K et al 2005 IEEE Trans. Plasma Sci. 33 1553
    [13]
    Shi Z Q et al 2014 IEEE Trans. Plasma Sci. 42 185
    [14]
    Jia S L, Shi Z Q and Wang L J 2014 J. Phys. D: Appl. Phys. 47 403001
    [15]
    Song X C et al 2013 IEEE Trans. Plasma Sci. 41 2061
    [16]
    Shi Z Q et al 2015 IEEE Trans. Plasma Sci. 43 472
    [17]
    Afanas’ev V P et al 2010 IEEE Trans. Plasma Sci. 38 1028
    [18]
    Cunha M D et al 2016 Phenomenological approach to simulation of propagation of spots over cathodes of highpower vacuum circuit breakers 27th Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV) (Suzhou, China)
    [19]
    Robson A E 1959 The motion of an arc in a magnetic field Proc. of the 4th Int. Conf. on Phenomena in Ionized Gases (Uppsala, Sweden) (Amsterdam: North-Holland Publishing Co.) pp 346–9
    [20]
    Perskii N E, Sysun V I and Khromoi Y D 1989 High Temp. 27 832
    [21]
    Hou P et al 2014 Appl. Mech. Mater. 701-702 270
    [22]
    Afanas’ev V P et al 2001 IEEE Trans. Plasma Sci. 29 695
    [23]
    Beilis I I 2001 IEEE Trans. Plasma Sci. 29 657
    [24]
    Beilis I I 2002 A model of cathode spot motion in a transverse magnetic field 20th Int. Symp. on Discharges and Electrical Insulation in Vacuum (Paris, France)
    [25]
    Shi Z Q et al 2014 IEEE Trans. Plasma Sci. 42 2124
  • Related Articles

    [1]Guangzhou HAO, Jianqiang XU, Youwen SUN, Zhibin GUO, Organizing Committee of the 11th Conference on Magnetic Confined Fusion Theory and Simulation. Summary of the 11th Conference on Magnetic Confined Fusion Theory and Simulation[J]. Plasma Science and Technology, 2024, 26(10): 101001. DOI: 10.1088/2058-6272/ad5d8a
    [2]Qingquan YANG (杨清泉), Fangchuan ZHONG (钟方川), Guosheng XU (徐国盛), Ning YAN (颜宁), Liang CHEN (陈良), Xiang LIU (刘祥), Yong LIU (刘永), Liang WANG (王亮), Zhendong YANG (仰振东), Yifeng WANG (王一丰), Yang YE (叶扬), Heng ZHANG (张恒), Xiaoliang LI (李小良). Combined Langmuir-magnetic probe measurements of type-I ELMy filaments in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65101-065101. DOI: 10.1088/2058-6272/aaab43
    [3]Junfeng SHAO (邵俊峰), Tingfeng WANG (王挺峰), Jin GUO (郭劲), Anmin CHEN (陈安民), Mingxing JIN (金明星). Effect of cylindrical cavity height on laser-induced breakdown spectroscopy with spatial confinement[J]. Plasma Science and Technology, 2017, 19(2): 25506-025506. DOI: 10.1088/2058-6272/19/2/025506
    [4]Abhishek GUPTA, Suhas S JOSHI. Modelling effect of magnetic field on material removal in dry electrical discharge machining[J]. Plasma Science and Technology, 2017, 19(2): 25505-025505. DOI: 10.1088/2058-6272/19/2/025505
    [5]WANG Shijia (王时佳), WANG Shaojie (王少杰). Effect of Fuelling Depth on the Fusion Performance and Particle Confinement of a Fusion Reactor[J]. Plasma Science and Technology, 2016, 18(12): 1155-1161. DOI: 10.1088/1009-0630/18/12/03
    [6]MIAO Feng (苗峰), ZHENG Xianjun (曾宪俊), DENG Baiquan (邓柏权), LIU Wei (刘伟), OU Wei (欧巍), HUANG Yi (黄毅). Magnetic Inertial Confinement Fusion (MICF)[J]. Plasma Science and Technology, 2016, 18(11): 1055-1063. DOI: 10.1088/1009-0630/18/11/01
    [7]CHENG Yuguo (成玉国), CHENG Mousen (程谋森), WANG Moge (王墨戈), YANG Xiong (杨雄), LI Xiaokang (李小康). Analysis of the Plasma Properties Affected by Magnetic Confinement with Special Emphasis on Helicon Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1119-2225. DOI: 10.1088/1009-0630/16/12/06
    [8]WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02
    [9]HE Yinghua (何迎花), YU Yi(余羿), WEN Yizhi (闻一之), LIU Wandong(刘万东), LI Ding(李定), YU Changxuan(俞昌旋), XIE Jinlin(谢锦林), LI Hong(李弘), LAN Tao (兰涛), WANG Haoyu(王昊宇). Upgrading of the Magnetic Confinement Plasma Device KT-5E[J]. Plasma Science and Technology, 2012, 14(2): 94-96. DOI: 10.1088/1009-0630/14/2/02
    [10]Leila GHOLAMZADEH, Abbas GHASEMIZAD. Non-Uniformity of Heavy-Ion Beam Irradiation on a Direct-Driven Pellet in Inertial Confinement Fusion[J]. Plasma Science and Technology, 2011, 13(1): 44-49.
  • Cited by

    Periodical cited type(8)

    1. Zhao, H., Dai, H., Yue, X. et al. Manipulating Tumbling Spacecraft by Hall Thruster. IEEE Transactions on Aerospace and Electronic Systems, 2025. DOI:10.1109/TAES.2025.3528916
    2. Li, J., Wei, L., Hu, Y. et al. Perturbation indicator for Hall effect thruster operating state based on statistical characteristics of breathing oscillation time scale signals. Advances in Space Research, 2023, 72(9): 3595-3605. DOI:10.1016/j.asr.2023.07.001
    3. Tang, X., Lin, Z., Zhou, Z. et al. Analysis and Experimental Validation of an Integrated Current-Source Power Supply With High Power Factor for DBD Applications. IEEE Transactions on Plasma Science, 2023, 51(5): 1290-1301. DOI:10.1109/TPS.2023.3263052
    4. Chen, X., Zhao, Y., Tian, K. et al. Study of beam divergence and thrust vector eccentricity characteristics of the Hall thruster based on dual Faraday probe array planes and its applications. Plasma Science and Technology, 2023, 25(5): 055501. DOI:10.1088/2058-6272/aca94e
    5. Luo, W., Long, J., Xu, L. et al. Research progress of distribution and detection technology neutral gas in Hall thruster discharge channel | [霍尔推力器放电通道中性气体分布及检测技术研究进展]. Guti Huojian Jishu/Journal of Solid Rocket Technology, 2023, 46(1): 158-166. DOI:10.7673/j.issn.1006-2793.2023.01.019
    6. Zeng, D., Li, H., Liu, J. et al. Numerical study of the effect of aft-loaded magnetic field on multiple ionizations in Hall thruster. Plasma Science and Technology, 2022, 24(7): 074005. DOI:10.1088/2058-6272/ac5788
    7. Chen, X., Gao, J., Yang, S. et al. Experimental and numerical simulation study of the effect for the anode positions on the discharge characteristics of 300 W class low power Hall thrusters. Plasma Science and Technology, 2022, 25(1): 015504. DOI:10.1088/2058-6272/ac7d42
    8. Tang, H., Yu, D., Wang, H. et al. Special issue on selected papers from CEPC 2020. Plasma Science and Technology, 2021, 23(10): 100101. DOI:10.1088/2058-6272/ac22f7

    Other cited types(0)

Catalog

    Article views (174) PDF downloads (556) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return