Advanced Search+
Syed ZAHEERUDDIN, Yufan LI (李煜璠), Dongmei ZHAO (赵冬梅), Xinwen MA (马新文), Jie YANG (杨杰). The effect of the direct current electric field on the dynamics of the ultracold plasma[J]. Plasma Science and Technology, 2018, 20(8): 85001-085001. DOI: 10.1088/2058-6272/aac166
Citation: Syed ZAHEERUDDIN, Yufan LI (李煜璠), Dongmei ZHAO (赵冬梅), Xinwen MA (马新文), Jie YANG (杨杰). The effect of the direct current electric field on the dynamics of the ultracold plasma[J]. Plasma Science and Technology, 2018, 20(8): 85001-085001. DOI: 10.1088/2058-6272/aac166

The effect of the direct current electric field on the dynamics of the ultracold plasma

Funds: This work was supported by the National Key R&D Program of China (Grant No. 2017YFA0402300), National Natural Science Foundation of China (Grant No. 11404346), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030900).
More Information
  • Received Date: March 13, 2018
  • We created an ultracold plasma by photoionizing the laser-cooled and trapped rubidium atoms in a magneto-optical trap. In the externally applied direct current (DC) electric field environment, the electrons which escape from the potential well of the ultracold plasma were detected for different numbers of the ions and initial kinetic energies of the electrons. The results are in good agreement with the calculations, based on the Coulomb potential well model, indicating that the external DC field is an effective tool to adjust the depth of potential well of the plasma, and it is possible to create an ultracold plasma in a controlled manner.
  • [1]
    Metcalf H J and van der Straten P 2001 Laser Cooling and Trapping (New York: Springer)
    [2]
    Ichimuru S 1982 Rev. Mod. Phys. 54 1017
    [3]
    van Horn H M 1991 Science 252 384
    [4]
    Bathgate S N, Bilek M M M and Mckenzie D R 2017 Plasma Sci. Technol. 19 083001
    [5]
    Rischke D H 2004 Prog. Part. Nucl. Phys. 52 197
    [6]
    Yin H, Efaaf M J and Zhang W 2012 Plasma Sci. Technol. 14 445
    [7]
    Bourdel T et al 2004 Phys. Rev. Lett. 93 050401
    [8]
    Spielman I B, Phillips W D and Porto J V 2007 Phys. Rev. Lett. 98 080404
    [9]
    Kriesel J M et al 2002 Phys. Rev. Lett. 88 125003
    [10]
    Liu B and Goree J 2008 Phys. Rev. Lett. 100 055003
    [11]
    Hong Y et al 2017 Plasma Sci. Technol. 19 055301
    [12]
    Murillo M S J 2009 Phys. A: Math. Theor. 42 214054
    [13]
    Killian T C et al 1999 Phys. Rev. Lett. 83 4776
    [14]
    Robinson M P et al 2000 Phys. Rev. Lett. 85 4466
    [15]
    Pohl T, Pattard T and Rost J M 2003 Phys. Rev. A 68 010703
    [16]
    Kulin S et al 2000 Phys. Rev. Lett. 85 318
    [17]
    Killian T C et al 2001 Phys. Rev. Lett. 86 3759
    [18]
    Fletcher R S, Zhang X L and Rolston S L 2007 Phys. Rev. Lett. 99 145001
    [19]
    Simien C E et al 2004 Phys. Rev. Lett. 92 143001
    [20]
    Cummings E A et al 2005 Phys. Rev. Lett. 95 235001
    [21]
    Mazevet S, Collins L A and Kress J D 2002 Phys. Rev. Lett. 88 055001
    [22]
    Robicheaux F and Hanson J D 2002 Phys. Rev. Lett. 88 055002
    [23]
    Kuzmin S G and O’Neil T M 2002 Phys. Rev. Lett. 88 065003
    [24]
    Pohl T, Pattard T and Rost J M 2004 Phys. Rev. A 70 033416
    [25]
    Niffenegger K, Gilmore K A and Robicheaux F 2011 J. Phys. B: At. Mol. Opt. Phys. 44 145701
    [26]
    Jinbo L et al 2014 Plasma Sci. Technol. 16 305
    [27]
    Killian T C et al 2007 Phys. Rep. 449 77
    [28]
    Lyon M and Rolston S L 2017 Rep. Prog. Phys. 80 017001
    [29]
    Roberts J L et al 2004 Phys. Rev. Lett. 92 253003
    [30]
    Comparat D et al 2005 Mon. Not. R. Astron. Soc. 361 1227
    [31]
    Rezende D C J et al 2006 Laser Phys. 16 1706
    [32]
    Wilson T, Chen W T and Roberts J 2013 Phys. Plasma 20 073503
    [33]
    Li Y et al 2018 J. Phys. Soc. Japan 87 054301
    [34]
    Rolston S L 2008 Physics 1 2
    [35]
    Vanhaecke N et al 2005 Phys. Rev. A 71 013416
  • Related Articles

    [1]Runhui WU (邬润辉), Song CHAI (柴忪), Jiaqi LIU (刘佳琪), Shiyuan CONG (从拾源), Gang MENG (孟刚). Numerical simulation and analysis of lithium plasma during low-pressure DC arc discharge[J]. Plasma Science and Technology, 2019, 21(4): 44002-044002. DOI: 10.1088/2058-6272/aafbc7
    [2]Haixin HU (胡海欣), Feng HE (何锋), Ping ZHU (朱平), Jiting OUYANG (欧阳吉庭). Numerical study of the influence of dielectric tube on propagation of atmospheric pressure plasma jet based on coplanar dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(5): 54010-054010. DOI: 10.1088/2058-6272/aaaad9
    [3]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [4]Muyang QIAN (钱沐杨), Gui LI (李桂), Sanqiu LIU (刘三秋), Yu ZHANG (张羽), Shan LI (李杉), Zebin LIN (林泽斌), Dezhen WANG (王德真). Effect of pulse voltage rising time on discharge characteristics of a helium–air plasma at atmospheric pressure[J]. Plasma Science and Technology, 2017, 19(6): 64015-064015. DOI: 10.1088/2058-6272/aa6154
    [5]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [6]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [7]ZHANG Jiao(张佼), WANG Yanhui(王艳辉), WANG Dezhen(王德真), ZHUANG Juan(庄娟). Two-Dimensional Simulation of Spatial-Temporal Behaviors About Period Doubling Bifurcation in an Atmospheric-Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2014, 16(2): 110-117. DOI: 10.1088/1009-0630/16/2/05
    [8]LIU Xinkun (刘新坤), XU Jinzhou (徐金洲), CUI Tongfei (崔桐菲), GUO Ying (郭颖), et al.. Gas Breakdown of Radio Frequency Glow Discharges in Helium at near Atmospheric Pressure[J]. Plasma Science and Technology, 2013, 15(7): 623-626. DOI: 10.1088/1009-0630/15/7/04
    [9]LI Xuechun (李雪春), WANG Huan (王欢), DING Zhenfeng (丁振峰), WANG Younian (王友年). Effect of Duty Cycle on the Characteristics of Pulse-Modulated Radio-Frequency Atmospheric Pressure Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2012, 14(12): 1069-1072. DOI: 10.1088/1009-0630/14/12/06
    [10]WANG Xiaohua, YANG Aijun, RONG Mingzhe, LIU Dingxing. Numerical Study on Atmospheric Pressure DBD in Helium: Single-breakdown and Multi-breakdown Discharges[J]. Plasma Science and Technology, 2011, 13(6): 724-729.

Catalog

    Article views (215) PDF downloads (474) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return