Advanced Search+
Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1
Citation: Junwei JIA (贾军伟), Hongbo FU (付洪波), Zongyu HOU (侯宗余), Huadong WANG (王华东), Zhibo NI (倪志波), Fengzhong DONG (董凤忠). Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34003-034003. DOI: 10.1088/2058-6272/aae3e1

Calibration curve and support vector regression methods applied for quantification of cement raw meal using laser-induced breakdown spectroscopy

Funds: This work is supported by National Natural Science Foundation of China (Grant Nos. 61505223, 41775128), the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. Y03RC21124), the External Cooperation Program of Chinese Academy of Sciences (Grant No. GJHZ1726) and the project of China State Key Lab. of Power System (Grant Nos. SKLD18KM11, SKLD18M12).
More Information
  • Received Date: July 19, 2018
  • Laser-induced breakdown spectroscopy (LIBS) is a qualitative and quantitative analytical technique with great potential in the cement industrial analysis. Calibration curve (CC) and support vector regression (SVR) methods coupled with LIBS technology were applied for the quantification of three types of cement raw meal samples to compare their analytical concentration range and the ability to reduce matrix effects, respectively. To reduce the effects of fluctuations of the pulse-to-pulse, the unstable ablation and improve the reproducibility, all of the analysis line intensities were normalized on a per-detector basis. The prediction results of the elements of interest in the three types of samples, Ca, Si, Fe, Al, Mg, Na, K and Ti, were compared with the results of the wet chemical analysis. The average relative error (ARE), relative standard deviation (RSD) and root mean squared error of prediction (RMSEP) were employed to investigate and evaluate the prediction accuracy and stability of the two prediction methods. The maximum average ARE of the CC and SVR methods is 34.62% instead of 6.13%, RSD is 40.89% instead of 7.60% and RMSEP is 1.34% instead of 0.43%. The results show that SVR method can accurately analyze samples within a wider concentration range and reduce the matrix effects, and LIBS coupled with it for a rapid, stable and accurate quantification of different types of cement raw meal samples is promising.
  • [1]
    Lei Y et al 2011 Atmos. Environ. 45 147
    [2]
    Lemberge P, Van Espen P J and Vrebos B A R 2000 X-Ray Spectrom. 29 297
    [3]
    Polat R et al 2004 J. Quant. Spectrosc. Radiat. Transfer 83 377
    [4]
    Chang M T et al 2017 Int. J. Adv. Eng. Sci. Appl. Math. 9 136
    [5]
    Taefi N, Khalaji M and Tavassoli S H 2010 Cem. Concr. Res. 40 1114
    [6]
    Wang J G et al 2015 Plasma Sci. Technol. 17 649
    [7]
    Zhang L et al 2012 Front. Phys. 7 690
    [8]
    Hu L et al 2015 Plasma Sci. Technol. 17 699
    [9]
    Zhang S et al 2018 Front. Phys. 13 135201
    [10]
    Wang Z et al 2012 Front. Phys. 7 708
    [11]
    Cremers D A and Radziemski L J 2006 Handbook of Laser- Induced Breakdown Spectroscopy (New Jersey: Wiley) (https://doi.org/10.1002/0470093013)
    [12]
    Gondal M A et al 2009 Spectrosc. Lett. 42 171
    [13]
    Mansoori A et al 2011 Opt. Lasers Eng. 49 318
    [14]
    Gehlen C D et al 2009 Spectrochim. Acta B 64 1135
    [15]
    Yin H L et al 2016 J. Anal. At. Spectrom. 31 2384
    [16]
    Li Y F et al 2016 Spectrosc. Spectral Anal. 36 1494
    [17]
    Owolabi T O and Gondal M 2017 J. Anal. At. Spectrom. (https://doi.org/10.1039/C7JA00229G)
    [18]
    Gu Y H et al 2016 Chin. Phys. Lett. 33 085201
    [19]
    Zhang T L et al 2015 J. Anal. At. Spectrom. 30 368
    [20]
    Shi Q et al 2015 J. Anal. At. Spectrom. 30 2384
    [21]
    Boucher T F et al 2015 Spectrochim. Acta B 107 1
    [22]
    Barnett W B, Fassel V A and Kniseley R N 1968 Spectrochim. Acta B 23 643
    [23]
    Fan R E et al 2005 J. Mach. Learn. Res. 6 1889 (http://jmlr. org/papers/v6/fan05a.html)
    [24]
    Awad M and Khanna R 2015 Support Vector Regression Efficient Learning Machines (Berkeley, CA: Apress) (https://doi.org/10.1007/978-1-4302-5990-9_4)
    [25]
    Smola A J and Sch?lkopf B 2004 Stat. Comput. 14 199
  • Related Articles

    [1]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Volume added surface barrier discharge plasma excited by bipolar nanosecond pulse power in atmospheric air: optical emission spectra influenced by gap distance[J]. Plasma Science and Technology, 2018, 20(11): 115403. DOI: 10.1088/2058-6272/aac881
    [2]Zilu ZHAO (赵紫璐), Dezheng YANG (杨德正), Wenchun WANG (王文春), Hao YUAN (袁皓), Li ZHANG (张丽), Sen WANG (王森). Electrical characters and optical emission spectra of VBD coupled SBD excited by sine AC voltage in atmospheric air[J]. Plasma Science and Technology, 2017, 19(6): 64007-064007. DOI: 10.1088/2058-6272/aa6679
    [3]PENG Shi (彭释), LI Lingjun (李灵均), LI Wei (李炜), WANG Chaoliang (王超梁), GUO Ying (郭颖), SHI Jianjun (石建军), ZHANG Jing (张菁). Surface Modification of Polyimide Film by Dielectric Barrier Discharge at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(4): 337-341. DOI: 10.1088/1009-0630/18/4/01
    [4]YANG Fuxiang (杨富翔), MU Zongxin (牟宗信), ZHANG Jialiang (张家良). Discharge Modes Suggested by Emission Spectra of Nitrogen Dielectric Barrier Discharge with Wire-Cylinder Electrodes[J]. Plasma Science and Technology, 2016, 18(1): 79-85. DOI: 10.1088/1009-0630/18/1/14
    [5]DI Lanbo(底兰波), ZHANG Xiuling(张秀玲), XU Zhijian(徐志坚). Preparation of Copper Nanoparticles Using Dielectric Barrier Discharge at Atmospheric Pressure and its Mechanism[J]. Plasma Science and Technology, 2014, 16(1): 41-44. DOI: 10.1088/1009-0630/16/1/09
    [6]HU Qianqian (胡倩倩), XU Jinzhou (徐金洲), ZHOU Zhenxing (周振兴), ZHANG Jing (张菁). Surface Modifiation of PBO Fibers for Composites by Coaxial Atmospheric Dielectric Barrier Discharge (PLA-PLA)[J]. Plasma Science and Technology, 2013, 15(5): 429-434. DOI: 10.1088/1009-0630/15/5/07
    [7]WANG Changquan (王长全), ZHANG Guixin (张贵新), WANG Xinxin (王新新). Surface Treatment of Polypropylene Films Using Dielectric Barrier Discharge with Magnetic Field[J]. Plasma Science and Technology, 2012, 14(10): 891-896. DOI: 10.1088/1009-0630/14/10/07
    [8]DIAO Ying, XU Jinzhou, HU Qianqian, ZHANG Jing, SHI Jianjun, GUO Ying. Electrical and Optical Characterization of Dielectric Barrier Discharge and Its Application to Plasma Treatment of Poly (ethylene terephtalate) (PET) Fibers[J]. Plasma Science and Technology, 2011, 13(6): 641-644.
    [9]Vadim Yu. PLAKSIN, Oleksiy V. PENKOV, Min Kook KO, Heon Ju LEE. Exhaust Cleaning with Dielectric Barrier Discharge[J]. Plasma Science and Technology, 2010, 12(6): 688-691.
    [10]Xu Jinzhou(徐金洲), Zhong Ping(钟平), Li Jialing(李嘉灵), Ling Jie (林捷), Diao Ying(刁颖), Zhang Jing(张菁). Characteristics of Coaxial Dielectric Barrier Discharge at an Atmospheric Pressure with a Swirling Gas Argon/Oxygen Mixture for the Surface Modification of Polyester Fiber Cord[J]. Plasma Science and Technology, 2010, 12(5): 601-607.
  • Cited by

    Periodical cited type(17)

    1. Cui, Y., He, F., Zhang, T. et al. The Effect of Magnetic Field and Pressure on the Threshold Power for Entering Helicon Wave Mode. 2024. DOI:10.1109/CIEEC60922.2024.10583404
    2. Sun, B., Zhang, Y., Zhou, C. et al. Influence Mechanism of Magnetic Field and Wave Modes on Helicon Plasma Thruster. AIAA Journal, 2023, 61(12): 5264-5276. DOI:10.2514/1.J063137
    3. Al-Yousef, H.A., Atta, M.R., Abdeltwab, E. et al. Effects of a modified argon glow plasma source on PET polymeric surface properties. Emerging Materials Research, 2023, 12(2): 163-175. DOI:10.1680/jemmr.22.00199
    4. Cui, R., Zhang, T., Yuan, Q. et al. Comparison of heating mechanisms of argon helicon plasma in different wave modes with and without blue core. Plasma Science and Technology, 2023, 25(1): 015403. DOI:10.1088/2058-6272/ac8510
    5. Zhang, T., Cui, R., Han, R. et al. Nitrogen discharge characteristics and species kinetics in helicon plasma source. Plasma Sources Science and Technology, 2022, 31(10): 105008. DOI:10.1088/1361-6595/ac95bd
    6. Zhu, W., Cui, R., He, F. et al. On the mechanism of density peak at low magnetic field in argon helicon plasmas. Physics of Plasmas, 2022, 29(9): 093511. DOI:10.1063/5.0091471
    7. Zhao, J., Miao, J., Zhang, T. et al. Microwave propagation along nonuniform plasma column as surface plasmon. Physics of Plasmas, 2022, 29(6): 063505. DOI:10.1063/5.0086467
    8. Wang, Y., Cui, R., Han, R. et al. Comparison of double layer in argon helicon plasma and magnetized DC discharge plasma. Plasma Science and Technology, 2022, 24(3): 035401. DOI:10.1088/2058-6272/ac1d9b
    9. Zhu, W., Cui, R., Han, R. et al. Observation of low-frequency oscillation in argon helicon discharge. Plasma Science and Technology, 2022, 25(2): 025401. DOI:10.1088/2058-6272/ac8850
    10. Wang, C., Liu, Y., Sun, M. et al. Effect of inhomogeneous magnetic field on blue core in Ar helicon plasma. Physics of Plasmas, 2021, 28(12): 123519. DOI:10.1063/5.0070479
    11. Zhu, W., Cui, R., He, F. et al. Striations in helicon-type argon plasma. Physics of Plasmas, 2021, 28(11): 113502. DOI:10.1063/5.0065771
    12. Wang, C., Liu, X., Geng, J. et al. Magnetic and pressure effects on E-H mode transition power and electron energy distribution in helical antenna-coupled RF Plasma. IEEE Transactions on Plasma Science, 2021, 49(9): 2806-2816. DOI:10.1109/TPS.2021.3101194
    13. Lyu, X., Yuan, C., Avtaeva, S. et al. A Large-area dc Grid Anode Glow Discharge in Helium. Plasma Physics Reports, 2021, 47(4): 369-376. DOI:10.1134/S1063780X21040061
    14. Yang, K., Cui, R., Zhu, W. et al. Effect of magnetic field on double layer in argon helicon plasma. High Voltage, 2021, 6(2): 358-365. DOI:10.1049/hve2.12018
    15. ZHANG, Z., ZHANG, Z., TANG, H. et al. Electron population properties with different energies in a helicon plasma source. Plasma Science and Technology, 2020, 23(1): abae4a. DOI:10.1088/2058-6272/abae4a
    16. Zhang, T., Zhang, T., Jiang, K. et al. Characteristics of inductively coupled plasma (ICP) and helicon plasma in a single-loop antenna. Plasma Science and Technology, 2020, 22(8): 085405. DOI:10.1088/2058-6272/ab8551
    17. Mei, D., Fang, Z., Shao, T. Recent Progress on Characteristics and Applications of Atmospheric Pressure Low Temperature Plasmas | [大气压低温等离子体特性与应用研究现状]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2020, 40(4): 1339-1358. DOI:10.13334/j.0258-8013.pcsee.191615

    Other cited types(0)

Catalog

    Article views (141) PDF downloads (281) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return