Advanced Search+
Rongjie YI (依蓉婕), Chengwu YI (依成武), Daolin DU (杜道林), Qi ZHANG (张琪), Haijun YU (喻海军), Liu YANG (杨柳). Research on quinoline degradation in drinking water by a large volume strong ionization dielectric barrier discharge reaction system[J]. Plasma Science and Technology, 2021, 23(8): 85505-085505. DOI: 10.1088/2058-6272/abffa9
Citation: Rongjie YI (依蓉婕), Chengwu YI (依成武), Daolin DU (杜道林), Qi ZHANG (张琪), Haijun YU (喻海军), Liu YANG (杨柳). Research on quinoline degradation in drinking water by a large volume strong ionization dielectric barrier discharge reaction system[J]. Plasma Science and Technology, 2021, 23(8): 85505-085505. DOI: 10.1088/2058-6272/abffa9

Research on quinoline degradation in drinking water by a large volume strong ionization dielectric barrier discharge reaction system

Funds: Thanks to National Natural Science Foundation of China (No. 32071521), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX18_2272), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment for their support of this work.
More Information
  • Received Date: January 19, 2021
  • Revised Date: May 06, 2021
  • Accepted Date: May 09, 2021
  • Quinoline is widely used in the production of drugs as a highly effective insecticide, and its derivatives can also be used to produce dyes. It has a teratogenic carcinogen to wildlife and humans once entering into the aquatic environment. In this study, the degradation mechanism of quinoline in drinking water by a strong ionization dielectric barrier discharge (DBD) low-temperature plasma with large volume was explored. High concentration of hydroxyl radical (centerdotOH) (0.74 mmol l−1) and ozone (O3) (58.2 mg l−1) produced by strongly ionized discharge DBD system were quantitatively analyzed based on the results of electron spin resonance and O3 measurements. The influencing reaction conditions of input voltages, initial pH value, centerdotOH inhibitors, initial concentration and inorganic ions on the removal efficiency of quinoline were systematically studied. The obtained results showed that the removal efficiency and TOC removal of quinoline achieved 94.8% and 32.2%, degradation kinetic constant was 0.050 min−1 at 3.8 kV and in a neutral pH (7.2). The proposed pathways of quinoline were suggested based on identified intermediates as hydroxy pyridine, fumaric acid, oxalic acid, and other small molecular acids by high-performance liquid chromatography/tandem mass spectrometry analysis. Moreover, the toxicity analysis on the intermediates demonstrated that its acute toxicity, bioaccumulation factor and mutagenicity were reduced. The overall findings provided theoretical and experimental basis for the application of a high capacity strong ionization DBD water treatment system in the removal of quinoline from drinking water.
  • [1]
    Wang C R et al 2016 Chemosphere 149 219
    [2]
    Liu D et al 2019 Chemosphere 227 647
    [3]
    Jing J Y et al 2012 J. Hazard. Mater. 237–238 247
    [4]
    Li Y M et al 2010 J. Hazard. Mater. 173 151
    [5]
    Rameshraja D et al 2018 Chem. Pap. 72 617
    [6]
    Pachupate N J and Vaidya P D 2018 J. Environ. Chem. Eng.6 883
    [7]
    Bai Q et al 2015 Environ. Sci. Technol. 49 11536
    [8]
    Qiao L and Wang J L 2010 Bioresour. Technol. 101 7683
    [9]
    Lee M et al 2017 Environ. Sci. Technol. 51 497
    [10]
    Wang Z X 2014 MSc Thesis Dalian University of Technology (in Chinese) (https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDLAST2015&filename=1015571933.nh)
    [11]
    Moreira N F F et al 2015 Water Res. 87 87
    [12]
    Gümüş D and Akbal F 2017 Chemosphere 174 218
    [13]
    Guo H et al 2021 Sep. Purif. Technol. 266 118543
    [14]
    Zhang Z T et al 2002 Poll. Cont. 3 25
    [15]
    Guo H et al 2021 J. Hazard. Mater. 403 123673
    [16]
    Li R J et al 2021 Sep. Purif. Technol. 274 119103
    [17]
    Wang B W et al 2017 J. Adv. Oxid. Technol. 20 196
    [18]
    Iervolino G, Vaiano V and Palma V 2019 Sep. Purif. Technol.215 155
    [19]
    Guo H et al 2021 Chemosphere https://doi.org/10.1016/j.chemosphere.2021.131156)
    [20]
    Gao L H et al 2013 Chem. Eng. J. 228 790
    [21]
    Marotta E et al 2011 Plasma Process. Polym. 8 867
    [22]
    Wang J et al 2020 Chem. Eng. J. 390 124512
    [23]
    Guo H et al 2021 Vacuum 185 110022
    [24]
    Bai M D et al 2005 Plasma Chem. Plasma Process. 25 539
    [25]
    Zhang Y B et al 2013 Plasma Chem. Plasma Process. 33 751
    [26]
    Tao X M et al 2011 Prog. Energy Combust. Sci. 37 113
    [27]
    Napartovich A P 2001 Plasmas Polym. 6 1
    [28]
    Fridman A, Chirokov A and Gutsol A 2005 J. Phys. D.: Appl.Phys. 38 R1
    [29]
    Miao H and Yun G 2011 Appl. Surf. Sci. 257 7065
    [30]
    Esposito E X et al 2005 Methods Mol. Biol. 275 131
    [31]
    Hijosa-Valsero M et al 2013 J. Hazard. Mater. 262 664
    [32]
    Asaithambi P et al 2020 Process. Saf. Environ. Prot. 142 212
    [33]
    He C C et al 2016 Sep. Purif. Technol. 165 107
    [34]
    Bilińska L et al 2019 Chem. Eng. J. 358 992
    [35]
    Irani R et al 2020 J. Environ. Chem. Eng. 9 104595
    [36]
    Oulton R et al 2015 Environ. Sci. Technol. 49 3687
    [37]
    Wu J L et al 2020 Chem. Eng. J. 384 123300
    [38]
    Guo H et al 2018 Chem. Eng. J. 425 130614
    [39]
    Bao Y P et al 2019 Appl. Catal. B 254 37
    [40]
    Bing J S et al 2015 Environ. Sci. Technol. 49 1690
    [41]
    Wang X M et al 2004 Chemosphere 55 733
    [42]
    Gupta D et al 2020 J. Environ. Manage. 258 110032
  • Related Articles

    [1]ZHANG Junmin (张俊民), LU Chunrong (卢春荣), GUAN Yonggang (关永刚), LIU Weidong (刘卫东). Calculation of Nozzle Ablation During Arcing Period in an SF6 Auto-Expansion Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 506-511. DOI: 10.1088/1009-0630/18/5/11
    [2]ZHONG Jianying (钟建英), GUO Yujing (郭煜敬), ZHANG Hao (张豪). Pressure and Arc Voltage Measurement in a 252 kV SF6 Puffer Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 490-493. DOI: 10.1088/1009-0630/18/5/08
    [3]NIU Chunping (纽春萍), DING Juwen (丁炬文), YANG Fei (杨飞), DONG Delong (董得龙), RONG Mingzhe (荣命哲), XU Dan (徐丹). The Influence of Contact Space on Arc Commutation Process in Air Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(5): 460-464. DOI: 10.1088/1009-0630/18/5/02
    [4]ZHANG Junmin (张俊民 ), CHI Chengbin (迟程缤), GUAN Yonggang (关永刚), LIU Weidong (刘卫东), WU Junhui (吴军辉). Simulation of Arc Rotation and Its Effects on Pressure of Expansion Volume in an Auto-Expansion SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 287-291. DOI: 10.1088/1009-0630/18/3/12
    [5]NIU Chunping (纽春萍), DING Juwen (丁炬文), WU Yi (吴翊), YANG Fei (杨飞), DONG Delong (董得龙), FAN Xingyu (范星宇), RONG Mingzhe (荣命哲). Simulation and Experimental Analysis of Arc Motion Characteristics in Air Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 241-246. DOI: 10.1088/1009-0630/18/3/05
    [6]LIN Xin (林莘), WANG Feiming (王飞鸣), XU Jianyuan (徐建源), XIA Yalong (夏亚龙), LIU Weidong (刘卫东). Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 223-229. DOI: 10.1088/1009-0630/18/3/02
    [7]CHENG Xian (程显), DUAN Xiongying (段雄英), LIAO Minfu (廖敏夫), et al.. The Voltage Distribution Characteristics of a Hybrid Circuit Breaker During High Current Interruption[J]. Plasma Science and Technology, 2013, 15(8): 800-806. DOI: 10.1088/1009-0630/15/8/16
    [8]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [9]YANG Fei(杨飞), MA Ruiguang ( 马瑞光), WU Yi( 吴翊), SUN Hao( 孙昊), NIU Chunping( 纽春萍), RONG Mingzhe(荣命哲). Numerical study on arc plasma behavior during arc commutation process in direct current circuit breaker[J]. Plasma Science and Technology, 2012, 14(2): 167-171. DOI: 10.1088/1009-0630/14/2/16
    [10]WU Junhui, WANG Xiaohua, MA Zhiying, RONG Mingzhe, YAN Jing. Numerical Simulation of Gas Flow during Arcing Process for 252kV Puffer Circuit Breakers[J]. Plasma Science and Technology, 2011, 13(6): 730-734.
  • Cited by

    Periodical cited type(3)

    1. Zhang, H., Wang, G., Yu, R. et al. Research on the Influence of Harmonics on Interruption Performance of High-Voltage Circuit Breaker. Lecture Notes in Electrical Engineering, 2024. DOI:10.1007/978-981-97-0877-2_25
    2. Li, L., Chen, J., Yi, C. et al. Mechanisms for insulation recovery during repetitive breakdowns in gas gaps. Physics of Plasmas, 2023, 30(12): 120501. DOI:10.1063/5.0166960
    3. PENG, S., LI, J., CAO, Y. et al. Research on arc root stagnation when small current is interrupted in self-excited circuit breaker. Plasma Science and Technology, 2022, 24(11): 114002. DOI:10.1088/2058-6272/ac71a3

    Other cited types(0)

Catalog

    Article views (127) PDF downloads (123) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return