Advanced Search+
Rongjie YI (依蓉婕), Chengwu YI (依成武), Daolin DU (杜道林), Qi ZHANG (张琪), Haijun YU (喻海军), Liu YANG (杨柳). Research on quinoline degradation in drinking water by a large volume strong ionization dielectric barrier discharge reaction system[J]. Plasma Science and Technology, 2021, 23(8): 85505-085505. DOI: 10.1088/2058-6272/abffa9
Citation: Rongjie YI (依蓉婕), Chengwu YI (依成武), Daolin DU (杜道林), Qi ZHANG (张琪), Haijun YU (喻海军), Liu YANG (杨柳). Research on quinoline degradation in drinking water by a large volume strong ionization dielectric barrier discharge reaction system[J]. Plasma Science and Technology, 2021, 23(8): 85505-085505. DOI: 10.1088/2058-6272/abffa9

Research on quinoline degradation in drinking water by a large volume strong ionization dielectric barrier discharge reaction system

Funds: Thanks to National Natural Science Foundation of China (No. 32071521), the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX18_2272), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment for their support of this work.
More Information
  • Received Date: January 19, 2021
  • Revised Date: May 06, 2021
  • Accepted Date: May 09, 2021
  • Quinoline is widely used in the production of drugs as a highly effective insecticide, and its derivatives can also be used to produce dyes. It has a teratogenic carcinogen to wildlife and humans once entering into the aquatic environment. In this study, the degradation mechanism of quinoline in drinking water by a strong ionization dielectric barrier discharge (DBD) low-temperature plasma with large volume was explored. High concentration of hydroxyl radical (centerdotOH) (0.74 mmol l−1) and ozone (O3) (58.2 mg l−1) produced by strongly ionized discharge DBD system were quantitatively analyzed based on the results of electron spin resonance and O3 measurements. The influencing reaction conditions of input voltages, initial pH value, centerdotOH inhibitors, initial concentration and inorganic ions on the removal efficiency of quinoline were systematically studied. The obtained results showed that the removal efficiency and TOC removal of quinoline achieved 94.8% and 32.2%, degradation kinetic constant was 0.050 min−1 at 3.8 kV and in a neutral pH (7.2). The proposed pathways of quinoline were suggested based on identified intermediates as hydroxy pyridine, fumaric acid, oxalic acid, and other small molecular acids by high-performance liquid chromatography/tandem mass spectrometry analysis. Moreover, the toxicity analysis on the intermediates demonstrated that its acute toxicity, bioaccumulation factor and mutagenicity were reduced. The overall findings provided theoretical and experimental basis for the application of a high capacity strong ionization DBD water treatment system in the removal of quinoline from drinking water.
  • [1]
    Wang C R et al 2016 Chemosphere 149 219
    [2]
    Liu D et al 2019 Chemosphere 227 647
    [3]
    Jing J Y et al 2012 J. Hazard. Mater. 237–238 247
    [4]
    Li Y M et al 2010 J. Hazard. Mater. 173 151
    [5]
    Rameshraja D et al 2018 Chem. Pap. 72 617
    [6]
    Pachupate N J and Vaidya P D 2018 J. Environ. Chem. Eng.6 883
    [7]
    Bai Q et al 2015 Environ. Sci. Technol. 49 11536
    [8]
    Qiao L and Wang J L 2010 Bioresour. Technol. 101 7683
    [9]
    Lee M et al 2017 Environ. Sci. Technol. 51 497
    [10]
    Wang Z X 2014 MSc Thesis Dalian University of Technology (in Chinese) (https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CDFDLAST2015&filename=1015571933.nh)
    [11]
    Moreira N F F et al 2015 Water Res. 87 87
    [12]
    Gümüş D and Akbal F 2017 Chemosphere 174 218
    [13]
    Guo H et al 2021 Sep. Purif. Technol. 266 118543
    [14]
    Zhang Z T et al 2002 Poll. Cont. 3 25
    [15]
    Guo H et al 2021 J. Hazard. Mater. 403 123673
    [16]
    Li R J et al 2021 Sep. Purif. Technol. 274 119103
    [17]
    Wang B W et al 2017 J. Adv. Oxid. Technol. 20 196
    [18]
    Iervolino G, Vaiano V and Palma V 2019 Sep. Purif. Technol.215 155
    [19]
    Guo H et al 2021 Chemosphere https://doi.org/10.1016/j.chemosphere.2021.131156)
    [20]
    Gao L H et al 2013 Chem. Eng. J. 228 790
    [21]
    Marotta E et al 2011 Plasma Process. Polym. 8 867
    [22]
    Wang J et al 2020 Chem. Eng. J. 390 124512
    [23]
    Guo H et al 2021 Vacuum 185 110022
    [24]
    Bai M D et al 2005 Plasma Chem. Plasma Process. 25 539
    [25]
    Zhang Y B et al 2013 Plasma Chem. Plasma Process. 33 751
    [26]
    Tao X M et al 2011 Prog. Energy Combust. Sci. 37 113
    [27]
    Napartovich A P 2001 Plasmas Polym. 6 1
    [28]
    Fridman A, Chirokov A and Gutsol A 2005 J. Phys. D.: Appl.Phys. 38 R1
    [29]
    Miao H and Yun G 2011 Appl. Surf. Sci. 257 7065
    [30]
    Esposito E X et al 2005 Methods Mol. Biol. 275 131
    [31]
    Hijosa-Valsero M et al 2013 J. Hazard. Mater. 262 664
    [32]
    Asaithambi P et al 2020 Process. Saf. Environ. Prot. 142 212
    [33]
    He C C et al 2016 Sep. Purif. Technol. 165 107
    [34]
    Bilińska L et al 2019 Chem. Eng. J. 358 992
    [35]
    Irani R et al 2020 J. Environ. Chem. Eng. 9 104595
    [36]
    Oulton R et al 2015 Environ. Sci. Technol. 49 3687
    [37]
    Wu J L et al 2020 Chem. Eng. J. 384 123300
    [38]
    Guo H et al 2018 Chem. Eng. J. 425 130614
    [39]
    Bao Y P et al 2019 Appl. Catal. B 254 37
    [40]
    Bing J S et al 2015 Environ. Sci. Technol. 49 1690
    [41]
    Wang X M et al 2004 Chemosphere 55 733
    [42]
    Gupta D et al 2020 J. Environ. Manage. 258 110032
  • Related Articles

    [1]Mingyang WU (吴明阳), Chijie XIAO (肖池阶), Yue LIU (刘悦), Xiaoyi YANG (杨肖易), Xiaogang WANG (王晓钢), Chang TAN (谭畅), Qi SUN (孙琪). Effects of magnetic field on electron power absorption in helicon fluid simulation[J]. Plasma Science and Technology, 2021, 23(8): 85002-085002. DOI: 10.1088/2058-6272/ac0718
    [2]Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31
    [3]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [4]Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f
    [5]HE Yuchen (何雨辰), Satoshi UEHARA, Hidemasa TAKANA, Hideya NISHIYAMA. Numerical Modelling and Simulation of Chemical Reactions in a Nano-Pulse Discharged Bubble for Water Treatment[J]. Plasma Science and Technology, 2016, 18(9): 924-932. DOI: 10.1088/1009-0630/18/9/09
    [6]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [7]WEN Xiaoqiong (温小琼), Wang Ming (王明), DING Zhenfeng (丁振峰), LIU Guishi (刘贵师). Decoloration of azo dye sunset yellow by a coaxial insulated-rod-to-cylinder underwater streamer discharge system[J]. Plasma Science and Technology, 2012, 14(4): 293-296. DOI: 10.1088/1009-0630/14/4/05
    [8]ZHANG Ling(张玲), WANG Lijun (王立军), JIA Shenli(贾申利), YANG Dingge(杨鼎革), SHI Zongqian(史宗谦). Numerical simulation of high-current vacuum arc with consideration of anode vapor[J]. Plasma Science and Technology, 2012, 14(4): 285-292. DOI: 10.1088/1009-0630/14/4/04
    [9]LI Fuliang (李付亮), WANG Feng(汪沨), WANG Guoli(王国利), W. PFEIFFER, He Rongtao(何荣涛). Study of Formation and Propagation of Streamers in SF6 and Its Gas Mixtures with Low Content of SF6 Using a One-Dimensional Fluid Model[J]. Plasma Science and Technology, 2012, 14(3): 187-191. DOI: 10.1088/1009-0630/14/3/02
    [10]WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05
  • Cited by

    Periodical cited type(2)

    1. Zhou, X.-F., Xiang, H.-F., Yang, M.-H. et al. Temporal evolution characteristics of the excited species in a pulsed needle-water discharge: effect of voltage and frequency. Journal of Physics D: Applied Physics, 2023, 56(45): 455202. DOI:10.1088/1361-6463/acec81
    2. Lu, X., Zhang, L., Wang, S. et al. Repetitive pulsed gas-liquid discharge in different atmospheres: from discharge characteristics to plasma-liquid interactions. Physical Chemistry Chemical Physics, 2023, 25(37): 25499-25510. DOI:10.1039/d3cp01074k

    Other cited types(0)

Catalog

    Article views (127) PDF downloads (123) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return