Advanced Search+
Zhefeng ZHANG, Lijun WANG, Ze YANG, Ming LUO, Jiagang LI. Numerical simulation of low-current vacuum arc jet considering anode evaporation in different axial magnetic fields[J]. Plasma Science and Technology, 2022, 24(4): 044002. DOI: 10.1088/2058-6272/ac3903
Citation: Zhefeng ZHANG, Lijun WANG, Ze YANG, Ming LUO, Jiagang LI. Numerical simulation of low-current vacuum arc jet considering anode evaporation in different axial magnetic fields[J]. Plasma Science and Technology, 2022, 24(4): 044002. DOI: 10.1088/2058-6272/ac3903

Numerical simulation of low-current vacuum arc jet considering anode evaporation in different axial magnetic fields

More Information
  • Author Bio:

    Lijun WANG, E-mail: lijunwang@mail.xjtu.edu.cn

  • Received Date: September 06, 2021
  • Revised Date: November 08, 2021
  • Accepted Date: November 10, 2021
  • Available Online: December 15, 2023
  • Published Date: April 11, 2022
  • As the main source of the vacuum arc plasma, cathode spots (CSs) play an important role on the behaviors of the vacuum arc. Their characteristics are affected by many factors, especially by the magnetic field. In this paper, the characteristics of the plasma jet from a single CS in vacuum arc under external axial magnetic field (AMF) are studied. A multi-species magneto-hydro-dynamic (MHD) model is established to describe the vacuum arc. The anode temperature is calculated by the anode activity model based on the energy flux obtained from the MHD model. The simulation results indicate that the external AMF has a significant effect on the characteristic of the plasma jet. When the external AMF is high enough, a bright spot appears on the anode surface. This is because with a higher AMF, the contraction of the diffused arc becomes more obvious, leading to a higher energy flux to the anode and thus a higher anode temperature. Then more secondary plasma can be generated near the anode, and the brightness of the 'anode spot'increases. During this process, the arc appearance gradually changes from a cone to a dumbbell shape. In this condition, the arc is in the diffuse mode. The appearance of the plasma jet calculated in the model is consistent with the experimental results.

  • This research was supported by National Natural Science Foundation of China (Nos. U1866202 and 51877164) and State Key Laboratory of Electrical Insulation and Power Equipment Fund (No. EIPE19128).

  • [1]
    Wang L J et al 2005 J. Phys. D: Appl. Phys. 38 1034 doi: 10.1088/0022-3727/38/7/011
    [2]
    Schulman M B and Schellekens H 2000 IEEE Trans. Plasma Sci. 28 443 doi: 10.1109/27.848103
    [3]
    Chaly A M et al 2009 IEEE Trans. Plasma Sci. 37 1426 doi: 10.1109/TPS.2009.2024670
    [4]
    Zabello K K et al 2011 IEEE Trans. Plasma Sci. 39 1319 doi: 10.1109/TPS.2011.2120626
    [5]
    Wang C et al 2016 J. Phys. D: Appl. Phys. 49 135203 doi: 10.1088/0022-3727/49/13/135203
    [6]
    Shkol'nik S M 2003 IEEE Trans. Plasma Sci. 31 832 doi: 10.1109/TPS.2003.818442
    [7]
    Popov S A et al 2012 Techn. Phys. 57 938 doi: 10.1134/S1063784212070183
    [8]
    Boxman R L and Goldsmith S 1983 J. Appl. Phys. 54 592 doi: 10.1063/1.332063
    [9]
    Wang L et al 2008 Eur. Phys. J. Appl. Phys. 41 243 doi: 10.1051/epjap:2008020
    [10]
    Wang L J et al 2020 Phys Plasmas 27 023514 doi: 10.1063/1.5129780
    [11]
    Wang L J et al 2015 J. Appl. Phys. 117 243301 doi: 10.1063/1.4922495
    [12]
    Schade E and Shmelev D L 2003 IEEE Trans. Plasma Sci. 31 890 doi: 10.1109/TPS.2003.818436
    [13]
    Shmelev D L and Uimanov I V 2015 IEEE Trans. Plasma Sci. 43 2261 doi: 10.1109/TPS.2015.2430372
    [14]
    Wang L J et al 2017 J. Phys. D: Appl. Phys. 50 095203 doi: 10.1088/1361-6463/aa5620
    [15]
    Huang X L et al 2015 IEEE Trans. Plasma Sci. 43 2283 doi: 10.1109/TPS.2015.2443811
    [16]
    Beilis I I et al 1998 J. Appl. Phys. 83 709 doi: 10.1063/1.366742
    [17]
    Wang L J et al 2016 AIP Adv. 6 125019 doi: 10.1063/1.4972060
    [18]
    Shmelev D L,Uimanov I V and Frolova V P 2018 Numerical simulation of low-current vacuum arc plasma jet in strong axial magnetic field 2018 28th Int. Symp. on Discharges and Electrical Insulation in Vacuum (ISDEIV)(Greifswald, Germany)(IEEE) p 377
    [19]
    Wang L J et al 2006 J. Appl. Phys. 100 113304 doi: 10.1063/1.2388734
    [20]
    Wang L J et al 2019 Appl. Phys. Lett. 115 014101 doi: 10.1063/1.5110538
    [21]
    Wang L et al 2019 IEEE Trans. Plasma Sci. 47 3496 doi: 10.1109/tps.2019.2899659
    [22]
    Yang Z et al 2019 J. Appl. Phys. 126 193306 doi: 10.1063/1.5127964
    [23]
    Weast R C 1974 Handbook of Chemistry and Physics(Boca Raton, FLCRC Press)
    [24]
    Popov S A et al 2012 Tech. Phys. 57 938 doi: 10.1134/s1063784212070183
    [25]
    Khakpour A, Franke S and Methling R 2017 IEEE Trans. Plasma Sci. 99 1
    [26]
    Yang Z, Wang L and Gortschakow S 2021 J. Phys. D: Appl. Phys. 54 505201 doi: 10.1088/1361-6463/ac25b0
  • Related Articles

    [1]Rahul NAVIK, Sameera SHAFI, Md Miskatul ALAM, Md Amjad FAROOQ, Lina LIN (林丽娜), Yingjie CAI (蔡映杰). Influence of dielectric barrier discharge treatment on mechanical and dyeing properties of wool[J]. Plasma Science and Technology, 2018, 20(6): 65504-065504. DOI: 10.1088/2058-6272/aaaadd
    [2]Bin HAN (韩滨), D NEENA, Zesong WANG (王泽松), K K KONDAMAREDDY, Na LI (李娜), Wenbin ZUO (左文彬), Shaojian YAN (闫少健), Chuansheng LIU (刘传胜), Dejun FU (付德君). Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films[J]. Plasma Science and Technology, 2017, 19(4): 45503-045503. DOI: 10.1088/2058-6272/aa57eb
    [3]WANG Chunlin (王春林), WU Yi (吴翊), CHEN Zhexin (陈喆歆), YANG Fei (杨飞), FENG Ying (冯英), RONG Mingzhe (荣命哲), ZHANG Hantian (张含天). Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure[J]. Plasma Science and Technology, 2016, 18(7): 732-739. DOI: 10.1088/1009-0630/18/7/06
    [4]ZHOU Xue (周学), CUI Xinglei (崔行磊), CHEN Mo (陈默), ZHAI Guofu (翟国富). Thermodynamic Properties and Transport Coefficients of Nitrogen, Hydrogen and Helium Plasma Mixed with Silver Vapor[J]. Plasma Science and Technology, 2016, 18(5): 560-568. DOI: 10.1088/1009-0630/18/5/20
    [5]CHEN Hongyun (陈虹运), GOU Li (芶立). Mechanical Properties and Uniformity of Nanocrystalline Diamond Coating Deposited Around a Sphere by MPCVD[J]. Plasma Science and Technology, 2015, 17(12): 1038-1042. DOI: 10.1088/1009-0630/17/12/10
    [6]LI Xibao(李喜宝), LU Jinshan(卢金山), LUO Junming(罗军明), ZHANG Jianjun(张建军), OU Junfei(欧军飞), XU Haitao(徐海涛). Mechanical Properties of Thermoplastic Polyurethanes Laminated Glass Treated by Acid Etching Combined with Cold Plasma[J]. Plasma Science and Technology, 2014, 16(10): 964-968. DOI: 10.1088/1009-0630/16/10/11
    [7]Vahid ABBASI, Ahmad GHOLAMI, Kaveh NIAYESH. The Effects of SF6-Cu Mixture on the Arc Characteristics in a Medium Voltage Puffer Gas Circuit Breaker due to Variation of Thermodynamic Properties and Transport Coefficients[J]. Plasma Science and Technology, 2013, 15(6): 586-592. DOI: 10.1088/1009-0630/15/6/18
    [8]Aamir Shahzad, HE Maogang. Thermodynamic Characteristics of Dusty Plasma studied by using Molecular Dynamics Simulation[J]. Plasma Science and Technology, 2012, 14(9): 771-777. DOI: 10.1088/1009-0630/14/9/01
    [9]SHU Song(舒崧), LI Jiarong (李家荣). A Mean-Field Treatment in Studying Nuclear Matter Through a Thermodynamic Consistent Resummation Scheme[J]. Plasma Science and Technology, 2012, 14(5): 379-382. DOI: 10.1088/1009-0630/14/5/07
    [10]LIU Gu, WANG Liuying, CHEN Guiming, HUA Shaochun, ZHU Erlei. Effect of Spraying Parameters on the Microstructure and Mechanical Properties of Micro-Plasma Sprayed Alumina-Titania Coatings[J]. Plasma Science and Technology, 2011, 13(4): 474-479.
  • Cited by

    Periodical cited type(12)

    1. Kim, E.-J., Thiruthummal, A.A. Probabilistic theory of the L-H transition and causality. Plasma Physics and Controlled Fusion, 2025, 67(2): 025025. DOI:10.1088/1361-6587/adab1c
    2. Xu, J., Luan, Q., Li, H. et al. Neural network based fast prediction of double tearing modes in advanced tokamak plasmas. Physics of Plasmas, 2024, 31(12): 122113. DOI:10.1063/5.0229910
    3. Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3
    4. Tang, W., Luan, Q., Sun, H. et al. Screening effect of plasma flow on the resonant magnetic perturbation penetration in tokamaks based on two-fluid model. Plasma Science and Technology, 2023, 25(4): 045103. DOI:10.1088/2058-6272/aca372
    5. Liu, T., Li, H., Tang, W. et al. Intelligent control for predicting and mitigating major disruptions in magnetic confinement fusion. iEnergy, 2022, 1(2): 153-157. DOI:10.23919/IEN.2022.0022
    6. Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b
    7. Wang, Z., Tang, W., Wei, L. A brief review: Effects of resonant magnetic perturbation on classical and neoclassical tearing modes in tokamaks. Plasma Science and Technology, 2022, 24(3): 033001. DOI:10.1088/2058-6272/ac4692
    8. Lu, S.S., Ma, Z.W., Tang, W. et al. Numerical study on nonlinear double tearing mode in ITER. Nuclear Fusion, 2021, 61(12): 126065. DOI:10.1088/1741-4326/ac3022
    9. Lu, S.-S., Liu, Y., Wei, L. Numerical simulation of neoclassical tearing modes induced by resonant magnetic perturbations in tokamak plasmas. Vacuum, 2020. DOI:10.1016/j.vacuum.2020.109656
    10. Lu, S.S., Ma, Z.W., Zhang, H.W. et al. Locking effects of error fields on a tearing mode in tokamak. Plasma Physics and Controlled Fusion, 2020, 62(12): 125005. DOI:10.1088/1361-6587/abbcc4
    11. Nelson, A.O., Logan, N.C., Choi, W. et al. Experimental evidence of electron-cyclotron current drive-based neoclassical tearing mode suppression threshold reduction during mode locking on DIII-D. Plasma Physics and Controlled Fusion, 2020, 62(9): 094002. DOI:10.1088/1361-6587/ab9b3b
    12. Tang, W., Wang, Z.-X., Wei, L. et al. Control of neoclassical tearing mode by synergetic effects of resonant magnetic perturbation and electron cyclotron current drive in reversed magnetic shear tokamak plasmas. Nuclear Fusion, 2020, 60(2): 026015. DOI:10.1088/1741-4326/ab61d5

    Other cited types(0)

Catalog

    Figures(9)  /  Tables(1)

    Article views (287) PDF downloads (182) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return