Citation: | Guo MENG, Philipp LAUBER, Xin WANG, Zhixin LU. Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution[J]. Plasma Science and Technology, 2022, 24(2): 025101. DOI: 10.1088/2058-6272/ac3d7b |
In this work, the gyrokinetic eigenvalue code LIGKA, the drift-kinetic/MHD hybrid code HMGC and the gyrokinetic full-f code TRIMEG-GKX are employed to study the mode structure details of reversed shear Alfvén eigenmodes (RSAEs). Using the parameters from an ASDEX-Upgrade plasma, a benchmark with the three different physical models for RSAE without and with energetic particles (EPs) is carried out. Reasonable agreement has been found for the mode frequency and the growth rate. Mode structure symmetry breaking (MSSB) is observed when EPs are included, due to the EPs' non-perturbative effects. It is found that the MSSB properties are featured by a finite radial wave phase velocity, and the linear mode structure can be well described by an analytical complex Gaussian expression with complex parameters σ and s0, where s is the normalized radial coordinate. The mode structure is distorted in opposite manners when the EP drive shifted from one side of to the other side, and specifically, a non-zero average radial wave number ⟨ks⟩ with opposite signs is generated. The initial EP density profiles and the corresponding mode structures have been used as the input of HAGIS code to study the EP transport. The parallel velocity of EPs is generated in opposite directions, due to different values of the average radial wave number ⟨ks⟩ , corresponding to different initial EP density profiles with EP drive shifted away from the .
The authors would like to thank Dr. F. Zonca, Dr. X. Garbet and Dr. Simon Pinches for fruitful discussions, partially within the EUROFUSION Enabling Research Projects Projects 'NLED' (ER15-ENEA-03), 'NAT' (CfP-AWP17-ENR-MPG-01), 'MET' (ENR-MFE19-ENEA-05) and 'ATEP' (ENR-MOD.01.MPG). This work has been carried out within the framework of the Eurofusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement No. 633 053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
[1] |
Gorelenkov N N et al 2018 Nucl. Fusion 58 082016 doi: 10.1088/1741-4326/aac72b
|
[2] |
Zonca F et al 2015 Plasma Phys. Control. Fusion 57 014024 doi: 10.1088/0741-3335/57/1/014024
|
[3] |
Podestà M, Gorelenkova M and White R B 2014 Plasma Phys. Control. Fusion 56 055003 doi: 10.1088/0741-3335/56/5/055003
|
[4] |
Bass E M and Waltz R E 2017 Phys. Plasmas 24 122302 doi: 10.1063/1.4998420
|
[5] |
Zonca F et al 2015 New J. Phys. 17 013052 doi: 10.1088/1367-2630/17/1/013052
|
[6] |
Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008 doi: 10.1103/RevModPhys.88.015008
|
[7] |
Pinches S D et al 1998 Comput. Phys. Commun. 111 133 doi: 10.1016/S0010-4655(98)00034-4
|
[8] |
Chen L, White R B and Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122 doi: 10.1103/PhysRevLett.52.1122
|
[9] |
Chen L and Zonca F 1995 Phys. Scr. 1995 81 doi: 10.1088/0031-8949/1995/T60/011
|
[10] |
Zonca F and Chen L 1996 Phys. Plasmas 3 323 doi: 10.1063/1.871857
|
[11] |
Briguglio S et al 1995 Phys. Plasmas 2 3711 doi: 10.1063/1.871071
|
[12] |
Briguglio S, Zonca F and Vlad G 1998 Phys. Plasmas 5 3287 doi: 10.1063/1.872997
|
[13] |
Wang Z X et al 2013 Phys. Rev. Lett. 111 145003 doi: 10.1103/PhysRevLett.111.145003
|
[14] |
Tobias B J et al 2011 Phys. Rev. Lett. 106 075003 doi: 10.1103/PhysRevLett.106.075003
|
[15] |
Classen I G J et al 2010 Rev. Sci. Instrum. 8110D929 doi: 10.1063/1.3483214
|
[16] |
Classen I G J et al 2011 Plasma Phys. Control. Fusion 53 124018 doi: 10.1088/0741-3335/53/12/124018
|
[17] |
Taimourzadeh S et al 2019 Nucl. Fusion 59 066006 doi: 10.1088/1741-4326/ab0c38
|
[18] |
Ma R R, Zonca F and Chen L 2015 Phys. Plasmas 22 092501 doi: 10.1063/1.4929849
|
[19] |
Lu Z X et al 2018 Nucl. Fusion 58 082021 doi: 10.1088/1741-4326/aaae0f
|
[20] |
Meng G et al 2020 Nucl. Fusion 60 056017 doi: 10.1088/1741-4326/ab7e01
|
[21] |
Lu Z X et al 2019 Phys. Plasmas 26 122503 doi: 10.1063/1.5124376
|
[22] |
Lu Z X et al 2021 J. Comput. Phys. 440 110384 doi: 10.1016/j.jcp.2021.110384
|
[23] |
Lauber P et al 2007 J. Comput. Phys. 226 447 doi: 10.1016/j.jcp.2007.04.019
|
[24] |
Wang W X et al 2010 Phys. Plasmas 17 072511 doi: 10.1063/1.3459096
|
[25] |
Park W et al 1999 Phys. Plasmas 6 1796 doi: 10.1063/1.873437
|
[26] |
Todo Y and Sato T 1998 Phys. Plasmas 5 1321 doi: 10.1063/1.872791
|
[27] |
Bierwage A et al 2018 Nat. Commun. 9 3282 doi: 10.1038/s41467-018-05779-0
|
[28] |
Qin H, Tang W M and Rewoldt G 1999 Phys. Plasmas 6 2544 doi: 10.1063/1.873526
|
[29] |
Lauber P and Lu Z 2018 J. Phys. Conf. Ser. 1125 012015 doi: 10.1088/1742-6596/1125/1/012015
|
[30] |
Lauber P 2013 Phys. Rep. 533 33 doi: 10.1016/j.physrep.2013.07.001
|
[31] |
Imbeaux F et al 2015 Nucl. Fusion 55 123006 doi: 10.1088/0029-5515/55/12/123006
|
[32] |
Izzo R et al 1983 Phys. Fluids 26 2240 doi: 10.1063/1.864379
|
[33] |
Wang X et al 2011 Phys. Plasmas 18 052504 doi: 10.1063/1.3587080
|
[34] |
Park W et al 1992 Phys. Fluids B 4 2033 doi: 10.1063/1.860011
|
[35] |
Briguglio S et al 2017 Nucl. Fusion 57 072001 doi: 10.1088/1741-4326/aa515b
|
[36] |
Peeters A G et al 2011 Nucl. Fusion 51 094027 doi: 10.1088/0029-5515/51/9/094027
|
[37] |
Scott B and Smirnov J 2010 Phys. Plasmas 17 112302 doi: 10.1063/1.3507920
|
[38] |
Abiteboul J et al 2011 Phys. Plasmas 18 082503 doi: 10.1063/1.3620407
|
[39] |
Meng G et al 2018 Nucl. Fusion 58 082017 doi: 10.1088/1741-4326/aaa918
|
[40] |
McDevitt C J et al 2009 Phys. Rev. Lett. 103 205003 doi: 10.1103/PhysRevLett.103.205003
|
[41] |
Garbet X et al 2013 Phys. Plasmas 20 072502 doi: 10.1063/1.4816021
|
[42] |
Lauber P et al 2018 Strongly non-linear energetic particle dynamics in ASDEX upgrade scenarios with core impurity accumulation Proceedings of the 27th IAEA Fusion Energy Conference (Gandhinagar) 2018
|
[43] |
Brizard A J and Hahm T S 2007 Rev. Mod. Phys. 79 421 doi: 10.1103/RevModPhys.79.421
|
[44] |
White R B et al 2019 Phys. Plasmas 26 032508 doi: 10.1063/1.5088598
|
[45] |
Berk H L et al 1995 Nucl. Fusion 35 1661 doi: 10.1088/0029-5515/35/12/I30
|
[1] | Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432 |
[2] | Rongxiao ZHAI (翟戎骁), Mengtong QIU (邱孟通), Weixi LUO (罗维熙), Peitian CONG (丛培天), Tao HUANG (黄涛), Jiahui YIN (尹佳辉), Tianyang ZHANG (张天洋). Experimental investigation on the development characteristics of initial electrons in a gas pressurized closing switch under DC voltage[J]. Plasma Science and Technology, 2018, 20(4): 45505-045505. DOI: 10.1088/2058-6272/aaa8d8 |
[3] | ihao TIE (铁维昊), Cui MENG (孟萃), Yuting ZHANG (张雨婷), Zirang YAN (闫自让), Qiaogen ZHANG (张乔根). Analysis on discharge process of a plasma-jet trigered gas spark switch[J]. Plasma Science and Technology, 2018, 20(1): 14009-014009. DOI: 10.1088/2058-6272/aa8cbe |
[4] | WU Yifei (吴益飞), REN Zhigang (任志刚), FENG Ying (冯英), LI Mei (李美), ZHANG Hantian (张含天). Analysis of Fault Arc in High-Speed Switch Applied in Hybrid Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 299-304. DOI: 10.1088/1009-0630/18/3/14 |
[5] | HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12 |
[6] | HUANG Zhongde(黄忠德), YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), QIU Aici(邱爱慈). Experimental Research of ZnO Surface Flashover Trigger Device of Pseudo-Spark Switch[J]. Plasma Science and Technology, 2014, 16(5): 506-511. DOI: 10.1088/1009-0630/16/5/11 |
[7] | SANG Ziru(桑子儒), LI Feng(李锋), JIANG Xiao(江晓), JIN Ge(金革). A Reconfigurable Instrument System for Nuclear and Particle Physics Experiments[J]. Plasma Science and Technology, 2014, 16(4): 400-405. DOI: 10.1088/1009-0630/16/4/18 |
[8] | YAO Xueling(姚学玲), CHEN Jingliang(陈景亮), HU Shangmao(胡上茂). Emission Current Characteristics of Triggered Device of Vacuum Switch[J]. Plasma Science and Technology, 2014, 16(4): 380-384. DOI: 10.1088/1009-0630/16/4/14 |
[9] | LIU Xuandong (刘轩东), WANG Hu (王虎), LI Xiaoang (李晓昂), ZHANG Qiaogen (张乔根), et al.. Estimation of Surface Roughness due to Electrode Erosion in Field-Distortion Gas Switch[J]. Plasma Science and Technology, 2013, 15(8): 812-816. DOI: 10.1088/1009-0630/15/8/18 |
[10] | SHANG Chao, LIANG Lin, YU Yuehui, WU Yongjun, LI Hailiang. Experimental Study of Reversely Switched Dynistor Discharge Based on Gap Breakdown Load[J]. Plasma Science and Technology, 2011, 13(1): 121-124. |