Processing math: 100%
Advanced Search+
Guo MENG, Philipp LAUBER, Xin WANG, Zhixin LU. Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution[J]. Plasma Science and Technology, 2022, 24(2): 025101. DOI: 10.1088/2058-6272/ac3d7b
Citation: Guo MENG, Philipp LAUBER, Xin WANG, Zhixin LU. Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution[J]. Plasma Science and Technology, 2022, 24(2): 025101. DOI: 10.1088/2058-6272/ac3d7b

Mode structure symmetry breaking of reversed shear Alfvén eigenmodes and its impact on the generation of parallel velocity asymmetries in energetic particle distribution

More Information
  • Corresponding author:

    Guo MENG, E-mail: guo.meng@ipp.mpg.de

    Zhixin LU, E-mail: luzhixin@ipp.mpg.de

  • Received Date: August 04, 2021
  • Revised Date: November 17, 2021
  • Accepted Date: November 24, 2021
  • Available Online: February 22, 2024
  • Published Date: January 25, 2022
  • In this work, the gyrokinetic eigenvalue code LIGKA, the drift-kinetic/MHD hybrid code HMGC and the gyrokinetic full-f code TRIMEG-GKX are employed to study the mode structure details of reversed shear Alfvén eigenmodes (RSAEs). Using the parameters from an ASDEX-Upgrade plasma, a benchmark with the three different physical models for RSAE without and with energetic particles (EPs) is carried out. Reasonable agreement has been found for the mode frequency and the growth rate. Mode structure symmetry breaking (MSSB) is observed when EPs are included, due to the EPs' non-perturbative effects. It is found that the MSSB properties are featured by a finite radial wave phase velocity, and the linear mode structure can be well described by an analytical complex Gaussian expression with complex parameters σ and s0, where s is the normalized radial coordinate. The mode structure is distorted in opposite manners when the EP drive shifted from one side of to the other side, and specifically, a non-zero average radial wave number ks with opposite signs is generated. The initial EP density profiles and the corresponding mode structures have been used as the input of HAGIS code to study the EP transport. The parallel velocity of EPs is generated in opposite directions, due to different values of the average radial wave number ks , corresponding to different initial EP density profiles with EP drive shifted away from the .

  • The authors would like to thank Dr. F. Zonca, Dr. X. Garbet and Dr. Simon Pinches for fruitful discussions, partially within the EUROFUSION Enabling Research Projects Projects 'NLED' (ER15-ENEA-03), 'NAT' (CfP-AWP17-ENR-MPG-01), 'MET' (ENR-MFE19-ENEA-05) and 'ATEP' (ENR-MOD.01.MPG). This work has been carried out within the framework of the Eurofusion Consortium and has received funding from the Euratom research and training programme 2014–2018 and 2019–2020 under grant agreement No. 633 053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

  • [1]
    Gorelenkov N N et al 2018 Nucl. Fusion 58 082016 doi: 10.1088/1741-4326/aac72b
    [2]
    Zonca F et al 2015 Plasma Phys. Control. Fusion 57 014024 doi: 10.1088/0741-3335/57/1/014024
    [3]
    Podestà M, Gorelenkova M and White R B 2014 Plasma Phys. Control. Fusion 56 055003 doi: 10.1088/0741-3335/56/5/055003
    [4]
    Bass E M and Waltz R E 2017 Phys. Plasmas 24 122302 doi: 10.1063/1.4998420
    [5]
    Zonca F et al 2015 New J. Phys. 17 013052 doi: 10.1088/1367-2630/17/1/013052
    [6]
    Chen L and Zonca F 2016 Rev. Mod. Phys. 88 015008 doi: 10.1103/RevModPhys.88.015008
    [7]
    Pinches S D et al 1998 Comput. Phys. Commun. 111 133 doi: 10.1016/S0010-4655(98)00034-4
    [8]
    Chen L, White R B and Rosenbluth M N 1984 Phys. Rev. Lett. 52 1122 doi: 10.1103/PhysRevLett.52.1122
    [9]
    Chen L and Zonca F 1995 Phys. Scr. 1995 81 doi: 10.1088/0031-8949/1995/T60/011
    [10]
    Zonca F and Chen L 1996 Phys. Plasmas 3 323 doi: 10.1063/1.871857
    [11]
    Briguglio S et al 1995 Phys. Plasmas 2 3711 doi: 10.1063/1.871071
    [12]
    Briguglio S, Zonca F and Vlad G 1998 Phys. Plasmas 5 3287 doi: 10.1063/1.872997
    [13]
    Wang Z X et al 2013 Phys. Rev. Lett. 111 145003 doi: 10.1103/PhysRevLett.111.145003
    [14]
    Tobias B J et al 2011 Phys. Rev. Lett. 106 075003 doi: 10.1103/PhysRevLett.106.075003
    [15]
    Classen I G J et al 2010 Rev. Sci. Instrum. 8110D929 doi: 10.1063/1.3483214
    [16]
    Classen I G J et al 2011 Plasma Phys. Control. Fusion 53 124018 doi: 10.1088/0741-3335/53/12/124018
    [17]
    Taimourzadeh S et al 2019 Nucl. Fusion 59 066006 doi: 10.1088/1741-4326/ab0c38
    [18]
    Ma R R, Zonca F and Chen L 2015 Phys. Plasmas 22 092501 doi: 10.1063/1.4929849
    [19]
    Lu Z X et al 2018 Nucl. Fusion 58 082021 doi: 10.1088/1741-4326/aaae0f
    [20]
    Meng G et al 2020 Nucl. Fusion 60 056017 doi: 10.1088/1741-4326/ab7e01
    [21]
    Lu Z X et al 2019 Phys. Plasmas 26 122503 doi: 10.1063/1.5124376
    [22]
    Lu Z X et al 2021 J. Comput. Phys. 440 110384 doi: 10.1016/j.jcp.2021.110384
    [23]
    Lauber P et al 2007 J. Comput. Phys. 226 447 doi: 10.1016/j.jcp.2007.04.019
    [24]
    Wang W X et al 2010 Phys. Plasmas 17 072511 doi: 10.1063/1.3459096
    [25]
    Park W et al 1999 Phys. Plasmas 6 1796 doi: 10.1063/1.873437
    [26]
    Todo Y and Sato T 1998 Phys. Plasmas 5 1321 doi: 10.1063/1.872791
    [27]
    Bierwage A et al 2018 Nat. Commun. 9 3282 doi: 10.1038/s41467-018-05779-0
    [28]
    Qin H, Tang W M and Rewoldt G 1999 Phys. Plasmas 6 2544 doi: 10.1063/1.873526
    [29]
    Lauber P and Lu Z 2018 J. Phys. Conf. Ser. 1125 012015 doi: 10.1088/1742-6596/1125/1/012015
    [30]
    Lauber P 2013 Phys. Rep. 533 33 doi: 10.1016/j.physrep.2013.07.001
    [31]
    Imbeaux F et al 2015 Nucl. Fusion 55 123006 doi: 10.1088/0029-5515/55/12/123006
    [32]
    Izzo R et al 1983 Phys. Fluids 26 2240 doi: 10.1063/1.864379
    [33]
    Wang X et al 2011 Phys. Plasmas 18 052504 doi: 10.1063/1.3587080
    [34]
    Park W et al 1992 Phys. Fluids B 4 2033 doi: 10.1063/1.860011
    [35]
    Briguglio S et al 2017 Nucl. Fusion 57 072001 doi: 10.1088/1741-4326/aa515b
    [36]
    Peeters A G et al 2011 Nucl. Fusion 51 094027 doi: 10.1088/0029-5515/51/9/094027
    [37]
    Scott B and Smirnov J 2010 Phys. Plasmas 17 112302 doi: 10.1063/1.3507920
    [38]
    Abiteboul J et al 2011 Phys. Plasmas 18 082503 doi: 10.1063/1.3620407
    [39]
    Meng G et al 2018 Nucl. Fusion 58 082017 doi: 10.1088/1741-4326/aaa918
    [40]
    McDevitt C J et al 2009 Phys. Rev. Lett. 103 205003 doi: 10.1103/PhysRevLett.103.205003
    [41]
    Garbet X et al 2013 Phys. Plasmas 20 072502 doi: 10.1063/1.4816021
    [42]
    Lauber P et al 2018 Strongly non-linear energetic particle dynamics in ASDEX upgrade scenarios with core impurity accumulation Proceedings of the 27th IAEA Fusion Energy Conference (Gandhinagar) 2018
    [43]
    Brizard A J and Hahm T S 2007 Rev. Mod. Phys. 79 421 doi: 10.1103/RevModPhys.79.421
    [44]
    White R B et al 2019 Phys. Plasmas 26 032508 doi: 10.1063/1.5088598
    [45]
    Berk H L et al 1995 Nucl. Fusion 35 1661 doi: 10.1088/0029-5515/35/12/I30
  • Related Articles

    [1]Yumei HOU (侯玉梅), Wei CHEN (陈伟), Yi YU (余羿), Xuru DUAN (段旭如), Min XU (许敏), Minyou YE (叶民友), HL-A Team. Study of nonlinear mode–mode couplings between Alfvénic modes by the Fourier bicoherence and Lissajous-curve technique in HL-2A[J]. Plasma Science and Technology, 2019, 21(7): 75101-075101. DOI: 10.1088/2058-6272/ab08fe
    [2]A A ABID, Quanming LU (陆全明), Huayue CHEN (陈华岳), Yangguang KE (柯阳光), S ALI, Shui WANG (王水). Effects of electron trapping on nonlinear electron-acoustic waves excited by an electron beam via particle-in-cell simulations[J]. Plasma Science and Technology, 2019, 21(5): 55301-055301. DOI: 10.1088/2058-6272/ab033f
    [3]Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
    [4]Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601
    [5]Dogan MANSUROGLU, Ilker Umit UZUN-KAYMAK. Experimental analysis on the nonlinear behavior of DC barrier discharge plasmas[J]. Plasma Science and Technology, 2017, 19(1): 15401-015401. DOI: 10.1088/1009-0630/19/1/015401
    [6]ZHANG Dingzong (张定宗), WANG Yanhui (王艳辉), WANG Dezhen (王德真). The Nonlinear Behaviors in Atmospheric Dielectric Barrier Multi Pulse Discharges[J]. Plasma Science and Technology, 2016, 18(8): 826-831. DOI: 10.1088/1009-0630/18/8/06
    [7]T. S. HAHM. Ion Heating from Nonlinear Landau Damping of High Mode Number Toroidal Alfvén Eigenmodes[J]. Plasma Science and Technology, 2015, 17(7): 534-538. DOI: 10.1088/1009-0630/17/7/02
    [8]WANG Lifeng (王立锋), YE Wenhua (叶文华), FAN Zhengfeng (范征锋), et al.. Nonlinear Evolution of Jet-Like Spikes from the Single-Mode Ablative Rayleigh-Taylor Instability with Preheating[J]. Plasma Science and Technology, 2013, 15(10): 961-968. DOI: 10.1088/1009-0630/15/10/01
    [9]LAN Chaohui (蓝朝晖), PENG Yufei (彭宇飞), YANG Zhen (杨振), LONG Jidong (龙继东). Transient Behavior of Negative Hydrogen Ion Extraction from Plasma[J]. Plasma Science and Technology, 2013, 15(9): 945-949. DOI: 10.1088/1009-0630/15/9/21
    [10]WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02

Catalog

    Figures(11)  /  Tables(4)

    Article views (182) PDF downloads (330) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return